Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hay, Aurland K.

  • Google
  • 1
  • 5
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022The kagomé metals RbTi3Bi5 and CsTi3Bi541citations

Places of action

Chart of shared publication
Wilson, Stephen D.
1 / 4 shared
Werhahn, Dominik
1 / 1 shared
Seshadri, Ram
1 / 10 shared
Johrendt, Dirk
1 / 6 shared
Ortiz, Brenden R.
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Wilson, Stephen D.
  • Werhahn, Dominik
  • Seshadri, Ram
  • Johrendt, Dirk
  • Ortiz, Brenden R.
OrganizationsLocationPeople

article

The kagomé metals RbTi3Bi5 and CsTi3Bi5

  • Wilson, Stephen D.
  • Werhahn, Dominik
  • Hay, Aurland K.
  • Seshadri, Ram
  • Johrendt, Dirk
  • Ortiz, Brenden R.
Abstract

<jats:title>Abstract</jats:title><jats:p>The kagomé metals RbTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> and CsTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> were synthesized both as polycrystalline powders by heating the elements in an argon atmosphere and as single crystals grown using a self-flux method. The compounds crystallize in the hexagonal crystal system isotypically to KV<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub> (<jats:italic>P</jats:italic>6/<jats:italic>mmm</jats:italic>, <jats:italic>Z</jats:italic> = 1, CsTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub>: <jats:italic>a</jats:italic> = 5.7873(1), <jats:italic>c</jats:italic> = 9.2062(1) Å; RbTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub>: <jats:italic>a</jats:italic> = 5.773(1), <jats:italic>c</jats:italic> = 9.065(1) Å). The titanium atoms form a kagomé net with bismuth atoms in the hexagons as well as above and below the triangles. The alkali metal atoms are coordinated by 12 bismuth atoms and form AlB<jats:sub>2</jats:sub>-like slabs between the kagomé layers. Magnetic susceptibility measurements with CsTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> and RbTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> single crystals reveal Pauli-paramagnetism and traces of superconductivity caused by CsBi<jats:sub>2</jats:sub>/RbBi<jats:sub>2</jats:sub> impurities. Magnetotransport measurements reveal conventional Fermi liquid behavior and quantum oscillations indicative of a single dominant orbit at low temperature. DFT calculations show the characteristic metallic kagomé band structure similar to that of CsV<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub> with reduced band filling. A symmetry analysis of the band structure does not reveal an obvious and unique signature of a nontrivial topology.</jats:p>

Topics
  • compound
  • single crystal
  • density functional theory
  • titanium
  • susceptibility
  • band structure
  • superconductivity
  • superconductivity
  • Alkali metal
  • Bismuth