People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johrendt, Dirk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022The kagomé metals RbTi3Bi5 and CsTi3Bi5citations
- 2019Solid Solutions of Grimm–Sommerfeld Analogous Nitride Semiconductors II‐IV‐N2 (II=Mg, Mn, Zn; IV=Si, Ge): Ammonothermal Synthesis and DFT Calculationscitations
- 2019Solid Solutions of Grimm–Sommerfeld Analogous Nitride Semiconductors II‐IV‐N<sub>2</sub> (II=Mg, Mn, Zn; IV=Si, Ge): Ammonothermal Synthesis and DFT Calculationscitations
- 2015[(Li0.8Fe0.2)OH]FeS and the ferromagnetic superconductors [(Li0.8Fe0.2)OH]Fe(S1−xSex) (0 < x ≤ 1)citations
- 2013Ce4Ag3Ge4O0.5 - chains of oxygen-centered OCe2Ce2/2] tetrahedra embedded in a CeAg3Ge4] intermetallic matrixcitations
- 2009The layered iron arsenide oxides Sr2CrO3FeAs and Ba2ScO3FeAscitations
Places of action
Organizations | Location | People |
---|
article
The kagomé metals RbTi3Bi5 and CsTi3Bi5
Abstract
<jats:title>Abstract</jats:title><jats:p>The kagomé metals RbTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> and CsTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> were synthesized both as polycrystalline powders by heating the elements in an argon atmosphere and as single crystals grown using a self-flux method. The compounds crystallize in the hexagonal crystal system isotypically to KV<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub> (<jats:italic>P</jats:italic>6/<jats:italic>mmm</jats:italic>, <jats:italic>Z</jats:italic> = 1, CsTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub>: <jats:italic>a</jats:italic> = 5.7873(1), <jats:italic>c</jats:italic> = 9.2062(1) Å; RbTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub>: <jats:italic>a</jats:italic> = 5.773(1), <jats:italic>c</jats:italic> = 9.065(1) Å). The titanium atoms form a kagomé net with bismuth atoms in the hexagons as well as above and below the triangles. The alkali metal atoms are coordinated by 12 bismuth atoms and form AlB<jats:sub>2</jats:sub>-like slabs between the kagomé layers. Magnetic susceptibility measurements with CsTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> and RbTi<jats:sub>3</jats:sub>Bi<jats:sub>5</jats:sub> single crystals reveal Pauli-paramagnetism and traces of superconductivity caused by CsBi<jats:sub>2</jats:sub>/RbBi<jats:sub>2</jats:sub> impurities. Magnetotransport measurements reveal conventional Fermi liquid behavior and quantum oscillations indicative of a single dominant orbit at low temperature. DFT calculations show the characteristic metallic kagomé band structure similar to that of CsV<jats:sub>3</jats:sub>Sb<jats:sub>5</jats:sub> with reduced band filling. A symmetry analysis of the band structure does not reveal an obvious and unique signature of a nontrivial topology.</jats:p>