People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Steinberg, Simon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Insights into a Defective Potassium Sulfido Cobaltate: Giant Magnetic Exchange Bias, Ionic Conductivity, and Electrical Permittivity
- 2021Exploring the frontier between polar intermetallics and Zintl phases for the examples of the prolific ALnTnTe<sub>3</sub>-type alkali metal (A) lanthanide (Ln) late transition metal (Tn) telluridescitations
- 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge 15 Te 85citations
- 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge<sub>15</sub>Te<sub>85</sub>citations
- 2020Revealing the Bonding Nature in an ALnZnTe3-Type Alkaline-Metal (A) Lanthanide (Ln) Zinc Telluride by Means of Experimental and Quantum-Chemical Techniquescitations
- 2017Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu1.4Ga2.8 and CsAu2Ga2.6citations
- 2016Gold in the Layered Structures of R3Au7Sn3: From Relativity to Versatilitycitations
- 2016Gold in the Layered Structures of R3Au7Sn3citations
- 2015Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systemscitations
- 2015Crystal Structure and Bonding in BaAu5Ga2 and AeAu4+ xGa3- x (Ae = Ba and Eu)citations
- 2015Gold-rich R3Au7Sn3: establishing the interdependence between electronic features and physical propertiescitations
- 2015Gold-rich R3Au7Sn3citations
Places of action
Organizations | Location | People |
---|
article
Exploring the frontier between polar intermetallics and Zintl phases for the examples of the prolific ALnTnTe<sub>3</sub>-type alkali metal (A) lanthanide (Ln) late transition metal (Tn) tellurides
Abstract
<jats:title>Abstract</jats:title><jats:p>Understanding electronic structures is important in order to interpret and to design the chemical and physical properties of solid-state materials. Among those materials, tellurides have attracted an enormous interest, because several representatives of this family are at the cutting edge of basic research and technologies. Despite this relevance of tellurides with regard to the design of materials, the interpretations of their electronic structures have remained challenging to date. For instance, most recent research on tellurides, which primarily comprise post-transition elements, revealed a remarkable electronic state, while the distribution of the valence electrons in tellurides comprising group-I/II elements could be related to the structural features by applying the Zintl-Klemm-Busmann concept. In the cases of tellurides containing transition metals the applications of the aforementioned idea should be handled with care, as such tellurides typically show characteristics of polar intermetallics rather than Zintl phases. And yet, how may the electronic structure look like for a telluride that consists of a transition metal behaving like a <jats:italic>p</jats:italic> metal? To answer this question, we examined the electronic structure for the quaternary RbTbCdTe<jats:sub>3</jats:sub> and provide a brief report on the crystal structures of the isostructural compounds RbErZnTe<jats:sub>3</jats:sub> and RbTbCdTe<jats:sub>3</jats:sub>, whose crystal structures have been determined by means of X-ray diffraction experiments for the very first time.</jats:p>