Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gaczynski, Piotr

  • Google
  • 1
  • 4
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Bi2Fe4O9: Structural changes from nano- to micro-crystalline state20citations

Places of action

Chart of shared publication
Murshed, Mohammad Mangir
1 / 7 shared
Gesing, Thorsten M.
1 / 12 shared
Kirsch, Andrea
1 / 3 shared
Becker, Klaus-Dieter
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Murshed, Mohammad Mangir
  • Gesing, Thorsten M.
  • Kirsch, Andrea
  • Becker, Klaus-Dieter
OrganizationsLocationPeople

article

Bi2Fe4O9: Structural changes from nano- to micro-crystalline state

  • Murshed, Mohammad Mangir
  • Gaczynski, Piotr
  • Gesing, Thorsten M.
  • Kirsch, Andrea
  • Becker, Klaus-Dieter
Abstract

<jats:title>Abstract</jats:title><jats:p>Bi<jats:sub>2</jats:sub>Fe<jats:sub>4</jats:sub>O<jats:sub>9</jats:sub>was synthesized using a polyol-mediated method. X-ray powder diffraction (XRPD) revealed that the as-synthesized sample is nano-crystalline. During heating, the X-ray amorphous powder transformed into a rhombohedral perovskite-type bismuth ferrate followed by a second transformation into mullite-type Bi<jats:sub>2</jats:sub>Fe<jats:sub>4</jats:sub>O<jats:sub>9</jats:sub>at higher temperatures. This transformation was studied at<jats:italic>in-situ</jats:italic>conditions by temperature-dependent XRPD and<jats:sup>57</jats:sup>Fe Mössbauer spectroscopy. The<jats:sup>57</jats:sup>Fe Mössbauer spectra indicate the existence of two Fe<jats:sup>3+</jats:sup>species at two different octahedrally coordinated sites leading to the conclusion that the as-synthesized powder of the polyol synthesis possesses a disordered (Bi<jats:sub>1–<jats:italic>x</jats:italic></jats:sub>Fe<jats:sub><jats:italic>x</jats:italic></jats:sub>)FeO<jats:sub>3</jats:sub>perovskite structure. Rietveld refinements have unambiguously supported this observation and this results suggest that one third of the Bi<jats:sup>3+</jats:sup>sites are substituted by Fe<jats:sup>3+</jats:sup>representing the initial chemical composition. This study has shown that as-synthesized nano-materials are not always similar to the respective micro-crystalline ones.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • amorphous
  • chemical composition
  • Mössbauer spectroscopy
  • Bismuth
  • mullite