Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stüble, Pirmin

  • Google
  • 4
  • 17
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024From Powder to Pouch Cell: Setting up a Sodium‐Ion Battery Reference System Based on Na₃V₂(PO₄)₃/C and Hard Carbon4citations
  • 2023Cycling Stability of Lithium‐Ion Batteries Based on Fe–Ti‐Doped LiNi$_{0.5}$Mn$_{1.5}$O$_{4}$ Cathodes, Graphite Anodes, and the Cathode‐Additive Li$_{3}$PO$_{4}$14citations
  • 2023Cycling stability of lithium‐ion batteries based on Fe–Ti‐doped LiNi0.5Mn1.5O4 cathodes, graphite anodes, and the cathode‐additive Li3PO4citations
  • 2016Synthesis and crystal structure of new K and Rb selenido/tellurido ferrate cluster compounds12citations

Places of action

Chart of shared publication
Koeppe, Arnd
1 / 6 shared
Schabel, Wilhelm
1 / 8 shared
Müller, Marcus
3 / 9 shared
Scharfer, Philip
1 / 7 shared
Smith, Anna
1 / 3 shared
Rajagopal, Deepalaxmi
1 / 1 shared
Binder, Joachim R.
3 / 12 shared
Klemens, Julian
1 / 1 shared
Bohn, Nicole
1 / 6 shared
Geßwein, Holger
1 / 6 shared
Akçay, Tolga
1 / 1 shared
Kolli, Satish
1 / 6 shared
Hofmann, Andreas
2 / 7 shared
Selzer, Michael
1 / 186 shared
Müller, Cedric
1 / 1 shared
Hofmann, Andreas
1 / 2 shared
Bergfeldt, Thomas
2 / 9 shared
Chart of publication period
2024
2023
2016

Co-Authors (by relevance)

  • Koeppe, Arnd
  • Schabel, Wilhelm
  • Müller, Marcus
  • Scharfer, Philip
  • Smith, Anna
  • Rajagopal, Deepalaxmi
  • Binder, Joachim R.
  • Klemens, Julian
  • Bohn, Nicole
  • Geßwein, Holger
  • Akçay, Tolga
  • Kolli, Satish
  • Hofmann, Andreas
  • Selzer, Michael
  • Müller, Cedric
  • Hofmann, Andreas
  • Bergfeldt, Thomas
OrganizationsLocationPeople

article

Synthesis and crystal structure of new K and Rb selenido/tellurido ferrate cluster compounds

  • Stüble, Pirmin
Abstract

<jats:title>Abstract</jats:title><jats:p>In the course of a systematic study of alkali iron chalcogenido salts containing clusters [Fe<jats:sub>4</jats:sub><jats:italic>Q</jats:italic><jats:sub>8</jats:sub>] a series of new mixed-valent potassium and rubidium selenido and tellurido ferrates(II/III) was synthesized by carefully heating the pure elements enclosed in sample tubes under an argon atmosphere up to maximum temperatures of 800–900 °C. Their crystal structures have been determined by means of single crystal X-ray diffraction. The mixed-valent Fe<jats:sup>II/III</jats:sup> tellurido ferrates <jats:italic>A</jats:italic><jats:sub>7</jats:sub>[Fe<jats:sub>4</jats:sub>Te<jats:sub>8</jats:sub>] form three different structure types. All structures contain tetramers of four edge sharing [FeTe<jats:sub>4</jats:sub>] tetrahedra, which are connected by common edges to form only slightly distorted tetrahedral [Fe<jats:sub>4</jats:sub>Te<jats:sub>8</jats:sub>]<jats:sup>7−</jats:sup> anions (‘stella quadrangula’) with a [Fe<jats:sub>4</jats:sub>Te<jats:sub>4</jats:sub>] cubane core. In all cases, these anions are surrounded by 26 alkali cations, which are located at the eight corners and the midpoints of the six faces and 12 edges of a cube. The three crystal structures can thus be described by three different packings of cuboid moieties: The monoclinic rubidium compound Rb<jats:sub>7</jats:sub>[Fe<jats:sub>4</jats:sub>Te<jats:sub>8</jats:sub>] (space group <jats:italic>C</jats:italic>2/<jats:italic>c</jats:italic>, <jats:italic>a</jats:italic> = 2000.16(7), <jats:italic>b</jats:italic> = 897.79(3), <jats:italic>c</jats:italic> = 1768.12(6) pm, <jats:italic>β</jats:italic> = 117.4995(10)°, <jats:italic>Z</jats:italic> = 4, <jats:italic>R</jats:italic>1 = 0.0296) is isotypic to the known cesium tellurido and sulfido ferrates Cs<jats:sub>7</jats:sub>[Fe<jats:sub>4</jats:sub>(S/Te)<jats:sub>8</jats:sub>]. Depending on the temperature, K<jats:sub>7</jats:sub>[Fe<jats:sub>4</jats:sub>Te<jats:sub>8</jats:sub>] forms two different but closely related new structure types: The tetragonal r.t. modification (space group <jats:italic>P</jats:italic>4<jats:sub>2</jats:sub>/<jats:italic>nmc</jats:italic>, <jats:italic>a</jats:italic> = 1222.25(14), <jats:italic>c</jats:italic> = 872.1(2) pm, <jats:italic>Z</jats:italic> = 2, <jats:italic>R</jats:italic>1 = 0.0583) crystallizes in a supergroup of the orthorhombic l.t. (100 K) form (space group <jats:italic>Pbcn</jats:italic>, <jats:italic>a</jats:italic> = 1715.5, <jats:italic>b</jats:italic> = 866.76(3), <jats:italic>c</jats:italic> = 1715.50(7) pm, <jats:italic>Z</jats:italic> = 4, <jats:italic>R</jats:italic>1 = 0.0160). In all structures, the cluster centered cubes are stacked to form columns along the short (≈870 pm) axis. These columns are themselves densely packed with 4 (both K compounds) and 6 (<jats:italic>A</jats:italic> = Rb) adjacent face-sharing columns. According to these arrangements of cluster-centered cubes, a relation of the packing of K/Rb cations and cluster anions with the simple cubic packing can be established applying the crystallographic group-subgroup formalism. Attempts to synthesize the corresponding selenium compound K<jats:sub>7</jats:sub>[Fe<jats:sub>4</jats:sub>Se<jats:sub>8</jats:sub>] resulted in the formation of the likewise mixed-valent compound K<jats:sub>6</jats:sub>[Fe<jats:sub>4</jats:sub>Se<jats:sub>8</jats:sub>]. Despite the modified composition, the new orthorhombic structure (space group <jats:italic>Pbcn</jats:italic>, <jats:italic>a</jats:italic> = 1632.62(6), <jats:italic>b</jats:italic> = 821.10(3), <jats:italic>c</jats:italic> = 1592.75(6) pm, <jats:italic>Z</jats:italic> = 4, <jats:italic>R</jats:italic>1 = 0.0540) is almost isotypic to the l.t. form of K<jats:sub>7</jats:sub>[Fe<jats:sub>4</jats:sub>Te<jats:sub>8</jats:sub>], the only difference being a missing K site. K<jats:sub>5</jats:sub>Fe<jats:sub>2</jats:sub>Te<jats:sub>5</jats:sub> crystallizes in a new structure type (cubic, space group <jats:italic>Pa</jats:italic>3̅, <jats:italic>a</jats:italic> = 1709.02(5) pm, <jats:italic>Z</jats:italic> = 4, <jats:italic>R</jats:italic>1 = 0.0594). According to K<jats:sub>5</jats:sub>Fe<jats:sub>2</jats:sub>Te<jats:sub>5</jats:sub>=K<jats:sub>15</jats:sub>[Fe<jats:sub>3</jats:sub>Te<jats:sub>7</jats:sub>]<jats:sub>2</jats:sub>(Te), its structure contains mixed-valent cuboidal trimers [Fe<jats:sub>3</jats:sub>Te<jats:sub>7</jats:sub>]<jats:sup>(6/7)−</jats:sup> and isolated telluride ions, which are coordinated by cubes of K<jats:sup>+</jats:sup> cations.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • single crystal X-ray diffraction
  • cluster
  • single crystal
  • Potassium
  • iron
  • space group
  • Rubidium