Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Söhnel, Tilo

  • Google
  • 2
  • 7
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2006Transmissionsoptimierte einkristallstrukturbestimmung und elektronische struktur von Bi3Ni28citations
  • 2005The nonstoichiometric ternary cerium iron sulfide Ce 2Fe 1.82S 56citations

Places of action

Chart of shared publication
Ruck, Michael
2 / 74 shared
Harms, Wiebke
1 / 1 shared
Hossain, Zakir
1 / 3 shared
Laubschat, Clemens
1 / 4 shared
Geibel, Christoph
1 / 3 shared
Wagner, Friedrich E.
1 / 2 shared
Mills, Allison M.
1 / 3 shared
Chart of publication period
2006
2005

Co-Authors (by relevance)

  • Ruck, Michael
  • Harms, Wiebke
  • Hossain, Zakir
  • Laubschat, Clemens
  • Geibel, Christoph
  • Wagner, Friedrich E.
  • Mills, Allison M.
OrganizationsLocationPeople

article

Transmissionsoptimierte einkristallstrukturbestimmung und elektronische struktur von Bi3Ni

  • Ruck, Michael
  • Söhnel, Tilo
Abstract

<p>Crystals of Bi<sub>3</sub>Ni were synthesized using iodine as mineralizer. X-ray diffraction on a single-crystal including transmission-optimized measurement and optimized absorption correction (μ(Mo-K<sub>α</sub>) = 1302 cm<sup>-1</sup>) results in a structure model (Pnma; a = 887.96(7), b = 409.97(3), c = 1147.8(1) pm) with significant deviations in interatomic distances compared with previous data from X-ray and neutron investigations. From quantum chemical calculations and from the structural chemistry of the subhalides related to Bi<sub>3</sub>Ni the chemical structure of the intermetallic compound can be derived. In the crystal structure the Ni atoms have a capped trigonal prismatic coordination of Bi atoms with strong bonds Ni-Bi and Ni-Ni. The prisms constitute rods <sub>∞</sub><sup>1</sup> [NiBi<sub>1/1</sub>Bi<sub>6/3</sub>] by sharing the non-capped square faces. The bonding between the intermetallic rods is clearly weaker than inside them, leading to a preservation of this structural fragment in the subhalides of Bi<sub>3</sub>Ni. In accordance with the low temperature superconductivity of the compound, its electronic band structure shows steep and flat bands at the Fermi level. DFT and ELF calculations reveal a separation of delocalized conduction electrons inside the prism rods and largely localized valence electrons between them.</p>

Topics
  • impedance spectroscopy
  • compound
  • x-ray diffraction
  • density functional theory
  • intermetallic
  • band structure
  • superconductivity
  • superconductivity