Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Anwar, Abdul Waheed

  • Google
  • 1
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Synthesis and characterization of Zn doped AlSb thin films for photovoltaic and energy applications3citations

Places of action

Chart of shared publication
Iqbal, Muhammad Aamir
1 / 6 shared
Idrees, Faryal
1 / 4 shared
Anwar, Nadia
1 / 3 shared
Shahid, Wajeehah
1 / 6 shared
Kanwal, Qudsia
1 / 2 shared
Malik, Maria
1 / 5 shared
Sattar, Farhan
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Iqbal, Muhammad Aamir
  • Idrees, Faryal
  • Anwar, Nadia
  • Shahid, Wajeehah
  • Kanwal, Qudsia
  • Malik, Maria
  • Sattar, Farhan
OrganizationsLocationPeople

article

Synthesis and characterization of Zn doped AlSb thin films for photovoltaic and energy applications

  • Iqbal, Muhammad Aamir
  • Idrees, Faryal
  • Anwar, Nadia
  • Shahid, Wajeehah
  • Kanwal, Qudsia
  • Anwar, Abdul Waheed
  • Malik, Maria
  • Sattar, Farhan
Abstract

<jats:title>Abstract</jats:title><jats:p>Thin films of zinc doped aluminum antimonide (Zn:AlSb) have been dumped on glass substrate using chemical bath deposition method. The morphological, structural, as well as optical properties of deposited thin films are investigated using XRD, optical microscopy, and UV-V is spectroscopy along with four-point probe technique. The XRD results exhibit that Zn is doped in AlSb and maximum grain size has been obtained at 4% Zn-concentration. Optical micrographs of pure and zinc doped aluminum antimonide (AlSb) at different concentrations of Zn have been shown to confirm the doping by observing changes in morphology and it has been observed that optimized films of AlSb are obtained at 4% of Zn-content. The optical bandgap of Zn doped AlSb films at varying concentrations of 0%, 1%, 2%, 3% and 4% has been found to decrease with enhancement in Zn-concentration and values are measured as 1.8, 1.7, 1.6, 1.4, and 1.3 eV respectively. The sheet resistivity also depends on Zn-content and has been observed to decrease as AlSb is doped with Zn, indicating an increase in electrical conductivity. The explored results indicate a significant potential of these deposited thin films to be used in photonics, photocatalysis, and energy industry.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • grain
  • resistivity
  • grain size
  • x-ray diffraction
  • thin film
  • aluminium
  • zinc
  • glass
  • glass
  • optical microscopy
  • electrical conductivity