Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tou, Hideki

  • Google
  • 1
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain2citations

Places of action

Chart of shared publication
Kuwata, Yoshiki
1 / 1 shared
Kotegawa, Hisashi
1 / 1 shared
Kösters, Jutta
1 / 4 shared
Seidel, Stefan
1 / 4 shared
Pöttgen, Rainer
1 / 78 shared
Paulsen, Christian Jens Gert
1 / 3 shared
Harima, Hisatomo
1 / 1 shared
Sugawara, Hitoshi
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Kuwata, Yoshiki
  • Kotegawa, Hisashi
  • Kösters, Jutta
  • Seidel, Stefan
  • Pöttgen, Rainer
  • Paulsen, Christian Jens Gert
  • Harima, Hisatomo
  • Sugawara, Hitoshi
OrganizationsLocationPeople

article

The orthorhombic-to-monoclinic phase transition in NbCrP – Peierls distortion of the chromium chain

  • Kuwata, Yoshiki
  • Kotegawa, Hisashi
  • Kösters, Jutta
  • Seidel, Stefan
  • Pöttgen, Rainer
  • Paulsen, Christian Jens Gert
  • Harima, Hisatomo
  • Tou, Hideki
  • Sugawara, Hitoshi
Abstract

<jats:title>Abstract</jats:title><jats:p>The equiatomic metal-rich phosphide NbCrP shows a structural phase transition around 125 K. The structures of the high- and low-temperature modifications were refined from single crystal X-ray diffractometer data of an un-twinned crystal: TiNiSi type, <jats:italic>Pnma</jats:italic>, <jats:italic>a</jats:italic> = 619.80(2), <jats:italic>b</jats:italic> = 353.74(4), <jats:italic>c</jats:italic> = 735.24(6) pm, <jats:italic>wR</jats:italic> = 0.0706, 288 <jats:italic>F</jats:italic><jats:sup>2</jats:sup> values, 20 variables at 240 K and <jats:italic>P</jats:italic>12<jats:sub>1</jats:sub>/<jats:italic>c</jats:italic>1, <jats:italic>a</jats:italic> = 630.59(3), <jats:italic>b</jats:italic> = 739.64(4), <jats:italic>c</jats:italic> = 933.09(5) pm, <jats:italic>β</jats:italic> = 132.491(6)°, <jats:italic>wR</jats:italic> = 0.0531, 1007 <jats:italic>F</jats:italic><jats:sup>2</jats:sup> values, 57 variables at 90 K. The structural phase transition is of a classical Peierls type. The equidistant chromium chain in HT-NbCrP (353.7 pm Cr–Cr) splits pairwise into shorter (315.2 pm) and longer (373.2 pm) Cr–Cr distances. This goes along with a strengthening of Cr–P bonding. The superstructure formation is discussed on the basis of a group–subgroup scheme. Electronic structure calculations show a lifting of band degeneracy. Protection of the non-symmorphic symmetry of space group <jats:italic>Pnma</jats:italic> is crucial for the phase transition. The estimated charge modulation is consistent with the interpretation as Peierls transition.</jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • chromium
  • phase
  • phase transition
  • space group
  • twinned