People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koželj, Primož
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Crystal structure and ferromagnetism of the CeFe$_9$Si$_4$ intermetallic compoundcitations
- 2023Crystal Structure and Ferromagnetism of the CeFe₉Si₄ Intermetallic Compoundcitations
- 2022Zero-Magnetostriction Magnetically Soft High-Entropy Alloys in the AlCoFeNiCux (x = 0.6–3.0) System for Supersilent Applicationscitations
- 2022Structure and superconductivity of tin-containing HfTiZrSnM (M = Cu, Fe, Nb, Ni) medium-entropy and high-entropy alloyscitations
- 2022The effect of scandium on the structure, microstructure and superconductivity of equimolar Sc-Hf-Nb-Ta-Ti-Zr refractory high-entropy alloyscitations
- 2022Electronic transport properties of the Al0.5TiZrPdCuNi alloy in the high-entropy alloy and metallic glass formscitations
- 2021Structure and Superconductivity of Tin-Containing HfTiZrSnM (M = Cu, Fe, Nb, Ni) Medium-Entropy and High-Entropy Alloyscitations
- 2020Anisotropic Electrical, Magnetic, and Thermal Properties of In3 Ni2 Intermetallic Catalystcitations
- 2020High-pressure synthesis of SmGe3citations
- 2013Electrical Resistivity and Magnetoresistance of the δ-FeZn10 Complex Intermetallic Phase
Places of action
Organizations | Location | People |
---|
article
High-pressure synthesis of SmGe3
Abstract
<jats:title>Abstract</jats:title><jats:p>The new samarium germanide SmGe<jats:sub>3</jats:sub> is obtained by high-pressure high-temperature synthesis of pre-reacted mixtures of samarium and germanium at a pressure of 9.5 GPa and temperatures between 1073 and 1273 K. SmGe<jats:sub>3</jats:sub> decomposes at 470(5) K into SmGe<jats:sub>2</jats:sub>, <jats:italic>α</jats:italic>-Sm<jats:sub>3</jats:sub>Ge<jats:sub>5</jats:sub> and a hitherto unknown phase. SmGe<jats:sub>3</jats:sub> exhibits a superstructure of the cubic Cu<jats:sub>3</jats:sub>Au-type. Transmission electron microscopy measurements of crystalline particles and prepared lamellae indicate a high density of defects on the nanoscale. Selected area electron diffraction and elaborate X-ray powder diffraction measurements consistently indicate a 2<jats:italic>a</jats:italic><jats:sub>0</jats:sub> × 2<jats:italic>a</jats:italic><jats:sub>0</jats:sub> × 2<jats:italic>a</jats:italic><jats:sub>0</jats:sub> superstructure adopting space group <jats:inline-formula id="j_zkri-2020-0058_ineq_001_w2aab3b7d459b1b6b1aab1c16b1c26Aa"><jats:alternatives><jats:tex-math>$Fm{3}m$</jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_zkri-2020-0058_ineq_001.png" /></jats:alternatives></jats:inline-formula> with <jats:italic>a</jats:italic> = 8.6719(2) Å.</jats:p>