Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fischer, Reinhard X.

  • Google
  • 1
  • 4
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Synthesis and characterization of mullite-type (Al1-xGax)4B2O910citations

Places of action

Chart of shared publication
Murshed, Mohammad Mangir
1 / 7 shared
Gesing, Thorsten M.
1 / 12 shared
Schneider, Hartmut
1 / 3 shared
Hoffmann, Kristin
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Murshed, Mohammad Mangir
  • Gesing, Thorsten M.
  • Schneider, Hartmut
  • Hoffmann, Kristin
OrganizationsLocationPeople

article

Synthesis and characterization of mullite-type (Al1-xGax)4B2O9

  • Murshed, Mohammad Mangir
  • Gesing, Thorsten M.
  • Fischer, Reinhard X.
  • Schneider, Hartmut
  • Hoffmann, Kristin
Abstract

<jats:title>Abstract</jats:title><jats:p>Mullite-type (Al<jats:sub>1-x</jats:sub>Ga<jats:sub>x</jats:sub>)<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> compounds were synthesized using the glycerine method. The end members Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> and Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> were produced at different temperatures. Starting from the Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> composition the incorporation limit of Ga ranges between 60 and 70 mol-%, while starting from Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> the Al incorporation limit is 70 mol-% in the Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> structure. The crystal structures were refined from the X-ray powder diffraction data and analyzed by the Rietveld method. The positions of B atoms were determined by distance least squares modeling. The temperature-dependent investigations demonstrate that the stability of a given member is a function of Al/Ga ratio in the structure. The incorporation of Ga in the Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> structures leads to a successive decrease of the decomposition temperatures. Pure Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> decomposes above 1323 K, whereas pure Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> is stable up to 1073 K.The thermal expansions of the lattice parameters were fit using extended Grüneisen first-order approximation for the zero-pressure equation of state. Changes of the internal energy of the crystal were calculated by the Debye-Einstein-Anharmonicity model. The thermal stability of each member has been explained in terms of the obtained Debye temperature.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • thermal expansion
  • decomposition
  • mullite