People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gesing, Thorsten M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Synthesis and characterization of mullite‐type Sn(Cr1-xVx)BO4: Structural, vibrational, magnetic, and thermal properties
- 2023Crystallography at non-ambient conditions and physical properties of the synthesized double-perovskites Sr2(Co1-xFex)TeO6citations
- 2022Effects of iron substitution and anti-site disorder on crystal structures, vibrational, optical and magnetic properties of double perovskites Sr 2 (Fe 1− x Ni x )TeO 6citations
- 2022Effects of iron substitution and anti-site disorder on crystal structures, vibrational, optical and magnetic properties of double perovskites Sr<sub>2</sub>(Fe<sub>1−<i>x</i></sub>Ni<sub><i>x</i></sub>)TeO<sub>6</sub>citations
- 2020Crystal structure of the synthetic analogue of iwateite, Na2BaMn(PO4)2: an X-ray powder diffraction and Raman studycitations
- 2019Characterization of Multiferroic Bi2Mn4O10 by Dielectric and Neutron Spectroscopycitations
- 2019Characterization of Multiferroic Bi 2 Mn 4 O 10 by Dielectric and Neutron Spectroscopycitations
- 2018Effect of the degree of inversion on optical properties of spinel ZnFe2O4
- 2018Disordered but primitive gallosilicate hydro-sodalite: Structure and thermal behaviour of a framework with novel cation distribution
- 2016Bi2Fe4O9: Structural changes from nano- to micro-crystalline statecitations
- 2014Synthesis and characterization of mullite-type (Al1-xGax)4B2O9citations
- 2008Gallium substitution in the alumosilicate framework: synthesis and structural studies of hydro sodalitescitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of mullite-type (Al1-xGax)4B2O9
Abstract
<jats:title>Abstract</jats:title><jats:p>Mullite-type (Al<jats:sub>1-x</jats:sub>Ga<jats:sub>x</jats:sub>)<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> compounds were synthesized using the glycerine method. The end members Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> and Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> were produced at different temperatures. Starting from the Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> composition the incorporation limit of Ga ranges between 60 and 70 mol-%, while starting from Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> the Al incorporation limit is 70 mol-% in the Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> structure. The crystal structures were refined from the X-ray powder diffraction data and analyzed by the Rietveld method. The positions of B atoms were determined by distance least squares modeling. The temperature-dependent investigations demonstrate that the stability of a given member is a function of Al/Ga ratio in the structure. The incorporation of Ga in the Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> structures leads to a successive decrease of the decomposition temperatures. Pure Al<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> decomposes above 1323 K, whereas pure Ga<jats:sub>4</jats:sub>B<jats:sub>2</jats:sub>O<jats:sub>9</jats:sub> is stable up to 1073 K.The thermal expansions of the lattice parameters were fit using extended Grüneisen first-order approximation for the zero-pressure equation of state. Changes of the internal energy of the crystal were calculated by the Debye-Einstein-Anharmonicity model. The thermal stability of each member has been explained in terms of the obtained Debye temperature.</jats:p>