Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Rui

  • Google
  • 9
  • 56
  • 270

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2023Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries9citations
  • 2023Emerging two-dimensional (2D) MXene-based nanostructured materials:Synthesis strategies, properties, and applications as efficient pseudo-supercapacitors64citations
  • 2022Zr diffusion in BCC refractory high entropy alloys: A case of "non-sluggish" diffusion behavior58citations
  • 2022Zr diffusion in BCC refractory high entropy alloys: A case of ‘non-sluggish’ diffusion behavior58citations
  • 2022The effect of two multi-component behavior change interventions on cognitive functions5citations
  • 2020Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption9citations
  • 2018Preferential Orientation of Crystals Induced by Incorporation of Organic Ligands in Mixed-Dimensional Hybrid Perovskite Films31citations
  • 2018Preferential Orientation of Crystals Induced by Incorporation of Organic Ligands in Mixed‐Dimensional Hybrid Perovskite Films31citations
  • 2017Microwave study of field-effect devices based on graphene/aluminum nitride/graphene structures5citations

Places of action

Chart of shared publication
Bresser, Dominic
1 / 21 shared
Steinle, Dominik
1 / 3 shared
Shi, Junli
1 / 1 shared
Chen, Zhen
1 / 10 shared
Frielinghaus, Henrich
3 / 25 shared
Nguyen, Huu-Dat
1 / 7 shared
Barnsley, Lester
1 / 3 shared
Paillard, Elie
1 / 1 shared
Li, Jie
1 / 17 shared
Iojoiu, Cristina
1 / 18 shared
Aminabhavi, Tejraj M.
1 / 1 shared
Young Jang, Won
1 / 1 shared
Kakarla, Raghava Reddy
1 / 1 shared
Venkata Reddy, Ch
1 / 1 shared
Zhang, Wen
1 / 6 shared
Shim, Jaesool
1 / 5 shared
Gupta, Vijai Kumar
1 / 9 shared
Li, Changping
1 / 1 shared
Grabowski, Blazej
2 / 29 shared
Zhang, Xi
2 / 18 shared
Sen, Sandipan
2 / 11 shared
Zhang, Jingfeng
2 / 2 shared
Gadelmeier, Christian
2 / 6 shared
Glatzel, Uwe
2 / 46 shared
Divinski, Sergiy V.
2 / 26 shared
Zhong, Yu
2 / 12 shared
Wilde, Gerhard
2 / 265 shared
Heiland, Emerald
1 / 1 shared
Bojsen-Møller, Emil
1 / 1 shared
Boraxbekk, Carl-Johan
1 / 1 shared
Nilsson, Jonna
1 / 1 shared
Kallings, Lena V.
1 / 1 shared
Ekblom, Maria
1 / 1 shared
Li, Jonathan Z.
1 / 1 shared
Hill, Alison L.
1 / 1 shared
Degruttola, Victor
1 / 1 shared
Bosch, Ronald J.
1 / 1 shared
Prague, Melanie
1 / 1 shared
Hu, Yuchen
1 / 1 shared
Kentzinger, Emmanuel
2 / 6 shared
Fu, Zhendong
2 / 4 shared
Urban, Alexander S.
2 / 8 shared
Feldmann, Jochen
2 / 14 shared
Müller-Buschbaum, Peter
1 / 471 shared
Manzi, Aurora
2 / 2 shared
Tong, Yu
2 / 10 shared
Wang, Kun
2 / 16 shared
Müllerbuschbaum, Peter
1 / 33 shared
Lischner, Johannes
1 / 5 shared
Shaforost, Olena
1 / 1 shared
Hao, Ling
1 / 2 shared
Hanham, Stephen M.
1 / 8 shared
Adabi, Mohammad
1 / 1 shared
Klein, Norbert
1 / 5 shared
Mihai, Andrei P.
1 / 2 shared
Petrov, Peter K.
1 / 4 shared
Chart of publication period
2023
2022
2020
2018
2017

Co-Authors (by relevance)

  • Bresser, Dominic
  • Steinle, Dominik
  • Shi, Junli
  • Chen, Zhen
  • Frielinghaus, Henrich
  • Nguyen, Huu-Dat
  • Barnsley, Lester
  • Paillard, Elie
  • Li, Jie
  • Iojoiu, Cristina
  • Aminabhavi, Tejraj M.
  • Young Jang, Won
  • Kakarla, Raghava Reddy
  • Venkata Reddy, Ch
  • Zhang, Wen
  • Shim, Jaesool
  • Gupta, Vijai Kumar
  • Li, Changping
  • Grabowski, Blazej
  • Zhang, Xi
  • Sen, Sandipan
  • Zhang, Jingfeng
  • Gadelmeier, Christian
  • Glatzel, Uwe
  • Divinski, Sergiy V.
  • Zhong, Yu
  • Wilde, Gerhard
  • Heiland, Emerald
  • Bojsen-Møller, Emil
  • Boraxbekk, Carl-Johan
  • Nilsson, Jonna
  • Kallings, Lena V.
  • Ekblom, Maria
  • Li, Jonathan Z.
  • Hill, Alison L.
  • Degruttola, Victor
  • Bosch, Ronald J.
  • Prague, Melanie
  • Hu, Yuchen
  • Kentzinger, Emmanuel
  • Fu, Zhendong
  • Urban, Alexander S.
  • Feldmann, Jochen
  • Müller-Buschbaum, Peter
  • Manzi, Aurora
  • Tong, Yu
  • Wang, Kun
  • Müllerbuschbaum, Peter
  • Lischner, Johannes
  • Shaforost, Olena
  • Hao, Ling
  • Hanham, Stephen M.
  • Adabi, Mohammad
  • Klein, Norbert
  • Mihai, Andrei P.
  • Petrov, Peter K.
OrganizationsLocationPeople

article

Comparison of empirical and dynamic models for HIV viral load rebound after treatment interruption

  • Li, Jonathan Z.
  • Hill, Alison L.
  • Degruttola, Victor
  • Bosch, Ronald J.
  • Prague, Melanie
  • Hu, Yuchen
  • Wang, Rui
Abstract

<jats:title>Abstract</jats:title><jats:sec id="j_scid-2019-0021_abs_001_w2aab3b7d648b1b6b1aab1c15b1Aa"><jats:title>Objective</jats:title><jats:p>To compare empirical and mechanistic modeling approaches for describing HIV-1 RNA viral load trajectories after antiretroviral treatment interruption and for identifying factors that predict features of viral rebound process.</jats:p></jats:sec><jats:sec id="j_scid-2019-0021_abs_002_w2aab3b7d648b1b6b1aab1c15b2Aa"><jats:title>Methods</jats:title><jats:p>We apply and compare two modeling approaches in analysis of data from 346 participants in six AIDS Clinical Trial Group studies. From each separate analysis, we identify predictors for viral set points and delay in rebound. Our empirical model postulates a parametric functional form whose parameters represent different features of the viral rebound process, such as rate of rise and viral load set point. The viral dynamics model augments standard HIV dynamics models–a class of mathematical models based on differential equations describing biological mechanisms–by including reactivation of latently infected cells and adaptive immune response. We use Monolix, which makes use of a Stochastic Approximation of the Expectation–Maximization algorithm, to fit non-linear mixed effects models incorporating observations that were below the assay limit of quantification.</jats:p></jats:sec><jats:sec id="j_scid-2019-0021_abs_003_w2aab3b7d648b1b6b1aab1c15b3Aa"><jats:title>Results</jats:title><jats:p>Among the 346 participants, the median age at treatment interruption was 42. Ninety-three percent of participants were male and sixty-five percent, white non-Hispanic. Both models provided a reasonable fit to the data and can accommodate atypical viral load trajectories. The median set points obtained from two approaches were similar: 4.44 log<jats:sub>10</jats:sub> copies/mL from the empirical model and 4.59 log<jats:sub>10</jats:sub> copies/mL from the viral dynamics model. Both models revealed that higher nadir CD4 cell counts and ART initiation during acute/recent phase were associated with lower viral set points and identified receiving a non-nucleoside reverse transcriptase inhibitor (NNRTI)-based pre-ATI regimen as a predictor for a delay in rebound.</jats:p></jats:sec><jats:sec id="j_scid-2019-0021_abs_004_w2aab3b7d648b1b6b1aab1c15b4Aa"><jats:title>Conclusion</jats:title><jats:p>Although based on different sets of assumptions, both models lead to similar conclusions regarding features of viral rebound process.</jats:p></jats:sec>

Topics
  • phase
  • size-exclusion chromatography