Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dilip, A. Anto

  • Google
  • 1
  • 5
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Mechanical and wear behaviour of PEEK, PTFE and PU: review and experimental study13citations

Places of action

Chart of shared publication
Santhosh, M. S.
1 / 4 shared
Markandan, Kalaimani
1 / 7 shared
Natarajan, Elango
1 / 8 shared
Sasikumar, R.
1 / 6 shared
Saravanakumar, N.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Santhosh, M. S.
  • Markandan, Kalaimani
  • Natarajan, Elango
  • Sasikumar, R.
  • Saravanakumar, N.
OrganizationsLocationPeople

article

Mechanical and wear behaviour of PEEK, PTFE and PU: review and experimental study

  • Santhosh, M. S.
  • Markandan, Kalaimani
  • Natarajan, Elango
  • Sasikumar, R.
  • Dilip, A. Anto
  • Saravanakumar, N.
Abstract

<jats:title>Abstract</jats:title><jats:p>Soft polymers such as polyether ether ketone (PEEK), polyurethane (PU) and polytetrafluoroethylene (PTFE) have gained significant research interest in the last few decades owing to their excellent material properties which can be harnessed to meet the demands of various applications such as biomedical implants and accessories, insulation panels to cooking utensils, inner coating material for non-stick cookware etc. In the present study, we provide a comprehensive review on the mechanical and tribological behaviour of PEEK, PU and PTFE polymers. Samples of these materials were also fabricated and the experimentally obtained tensile strength, flexural strength, wear rate and coefficient of frictions were ascertained with values reported in literature. It is highlighted that coefficient of friction of polymers were highly dependent on the surface texture of the polymer’s surface; where an uneven surface exhibited higher coefficient of friction. Perspectives for future progress are also highlighted in this paper.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • strength
  • flexural strength
  • texture
  • tensile strength
  • ketone
  • coefficient of friction