Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kireç, Osman

  • Google
  • 1
  • 3
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres30citations

Places of action

Chart of shared publication
Alkan, Hüseyin
1 / 1 shared
Erol, Kadir
1 / 2 shared
Alacabey, İhsan
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Alkan, Hüseyin
  • Erol, Kadir
  • Alacabey, İhsan
OrganizationsLocationPeople

article

Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres

  • Alkan, Hüseyin
  • Erol, Kadir
  • Alacabey, İhsan
  • Kireç, Osman
Abstract

<jats:title>Abstract</jats:title><jats:p>Sub-microparticles have many applications in different fields today. In this study, it is aimed to develop hydrophobic microparticles as an alternative to existing methods and to determine the 17β-estradiol adsorption performance of this adsorbent to purify the 17β-estradiol hormone which is found as an endocrine disruptor in environmental waters with high capacity and low cost. In this study, <jats:sc>l</jats:sc>-phenylalanine containing Poly(HEMA-MAPA) microparticles were synthesized by microemulsion polymerization and used as adsorbent. Microparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) methods. The size of the Poly(HEMA-MAPA) microparticles used was measured as 120–200 nm. Specific surface area and elemental analysis studies were also conducted. While the surface area of the particles was found to be a very high value of 1890 m<jats:sup>2</jats:sup>/g, the amount of incorporation of MAPA into the polymeric structure was calculated as 0.43 mmol/g. Adsorption studies were carried out in the batch system under different ambient conditions (17β-estradiol concentration, temperature, ionic intensity). The adsorption capacity of Poly(HEMA-MAPA) microparticles was calculated to be 98.4 mg/g. Isotherm models for adsorption interaction were investigated deeply, and it was determined that the adsorption mechanism is suitable for Langmuir isotherm.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • Fourier transform infrared spectroscopy
  • elemental analysis