Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De, Sadhan Kumar

  • Google
  • 1
  • 3
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Natural weather ageing of starch/polyvinyl alcohol blend: effect of glycerol content13citations

Places of action

Chart of shared publication
Khan, Massihullah J.
1 / 1 shared
Appu, Sreekumar Parambathmadhom
1 / 1 shared
Al-Harthi, Mamdouh A.
1 / 2 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Khan, Massihullah J.
  • Appu, Sreekumar Parambathmadhom
  • Al-Harthi, Mamdouh A.
OrganizationsLocationPeople

article

Natural weather ageing of starch/polyvinyl alcohol blend: effect of glycerol content

  • Khan, Massihullah J.
  • De, Sadhan Kumar
  • Appu, Sreekumar Parambathmadhom
  • Al-Harthi, Mamdouh A.
Abstract

<jats:title>Abstract</jats:title> <jats:p>Starch plasticized with glycerol and blended with polyvinyl alcohol (PVA) is recommended for use as a biodegradable material. The present article reports the results of studies of the natural weather ageing of starch/PVA blends having various amounts of glycerol in natural weather conditions of Saudi Arabia, with special reference to morphology and thermal behavior. Neat PVA has been used as a control to understand its behavior in its blend with starch. Differential scanning calorimeter studies indicated that an increase in the exposure time of samples to natural environment increases the crystallinity of PVA due to the breakage of intermolecular hydrogen bonding, thus facilitating the removal of the amorphous portion of the polymers in the blend. Thermogravimetric analysis revealed that an increase in glycerol content enhanced the degradation of the polymer, which is corroborated with the findings from the surface morphology using scanning electron microscopy and Fourier transfer infrared spectroscopy analyses.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • amorphous
  • scanning electron microscopy
  • Hydrogen
  • thermogravimetry
  • aging
  • alcohol
  • crystallinity
  • infrared spectroscopy