Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Musi, Robert

  • Google
  • 3
  • 3
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Optimization of the Two- and Three-DimensionalCharacterization of Rare Earth-Traced Deoxidation Products4citations
  • 2023Comparison between image based and tabular data-based inclusion class categorizationcitations
  • 2022Classification of non-metallic inclusions in steel by data-driven machine learning methods9citations

Places of action

Chart of shared publication
Thiele, Kathrin
2 / 10 shared
Babu, Shashank Ramesh
3 / 7 shared
Michelic, Susanne
3 / 27 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Thiele, Kathrin
  • Babu, Shashank Ramesh
  • Michelic, Susanne
OrganizationsLocationPeople

article

Comparison between image based and tabular data-based inclusion class categorization

  • Babu, Shashank Ramesh
  • Michelic, Susanne
  • Musi, Robert
Abstract

Non-metallic inclusions (NMI) have a significant impact on the final properties of steel products. As of today, the scanning electron microscope equipped with energy-dispersive spectroscopy (SEM-EDS) serves as the state of art characterization tool to study NMIs in steel. The automated 2D analysis method with the SEM-EDS allows for a comprehensive analysis of all the inclusions observed within a selected area of the sample. The drawback of this method is the time taken to complete the analysis. Therefore, machine learning methods have been introduced which can potentially replace the usage of EDS for obtaining chemical information of the inclusion by making quick categorizations of the inclusion classes and types. The machine learning methods can be developed by either training it directly with labeled backscattered electron (BSE) images or by tabular data consisting of image features input such as morphology and mean gray value obtained from the BSE images. The current paper compares both these methods using two steel grades. The advantages and the disadvantages have been documented. The paper will also compare the usage of shallow and deep learning methods to classify the steels and discuss the outlook of the existing machine learning methods to efficiently categorize the NMIs in steel.<br/><br/>

Topics
  • impedance spectroscopy
  • morphology
  • inclusion
  • scanning electron microscopy
  • steel
  • Energy-dispersive X-ray spectroscopy
  • machine learning