People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Padmanabhan, R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Evaluation of nickel shot peening process on strength of friction stir welded AA2014-T6 aluminum alloy joints
Abstract
<jats:title>Abstract</jats:title><jats:p>The best aluminum alloys for construction are those that incorporate copper. However, welding engineers find it difficult to join aluminium and its alloys as a result of cracking. One of the popular methods for joining nonferrous materials, especially aluminum alloys, is friction stir welding (FSW). A tensile strength of 75 % to 85 % of the basic material strength is produced by FSW joints. The majority of studies have documented a reduction in strength as a result of incomplete melting, creating a soft region at the boundary between the thermo – mechanically influenced zone and the stir zone. The current effort has focused on using the shot peening method to reduce the softness at the interface. According to the test findings, the nickel shot-peened joint produced a stronger joint than the traditional FSW joint. The shot-peened joint has gained 7 % additional strength compared to untreated joint.</jats:p>