Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grycová, Barbora

  • Google
  • 2
  • 13
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Using tanned leather waste to derive biochars for supercapacitor electrodes in various electrolytes1citations
  • 2016Application of pyrolysis process in processing of mixed food wastes16citations

Places of action

Chart of shared publication
Klemencová, Kateřina
1 / 2 shared
Vilčáková, Jarmila
1 / 28 shared
Stejskal, Jaroslav
1 / 22 shared
Sáha, Tomáš
1 / 27 shared
Lestinsky, Pavel
1 / 1 shared
Fei, Haojie
1 / 17 shared
Prokeš, Jan
1 / 8 shared
Sáha, Petr
1 / 221 shared
Joseph, Nikhitha
1 / 4 shared
Trchová, Miroslava
1 / 5 shared
Pryszcz, Adrian
1 / 1 shared
Kaloč, Miroslav
1 / 1 shared
Koutník, Ivan
1 / 1 shared
Chart of publication period
2024
2016

Co-Authors (by relevance)

  • Klemencová, Kateřina
  • Vilčáková, Jarmila
  • Stejskal, Jaroslav
  • Sáha, Tomáš
  • Lestinsky, Pavel
  • Fei, Haojie
  • Prokeš, Jan
  • Sáha, Petr
  • Joseph, Nikhitha
  • Trchová, Miroslava
  • Pryszcz, Adrian
  • Kaloč, Miroslav
  • Koutník, Ivan
OrganizationsLocationPeople

article

Application of pyrolysis process in processing of mixed food wastes

  • Pryszcz, Adrian
  • Kaloč, Miroslav
  • Grycová, Barbora
  • Koutník, Ivan
Abstract

<jats:title>Abstract</jats:title><jats:p>The food industry produces large amounts of solid and also liquid wastes. Different waste materials and their mixtures were pyrolysed in the laboratory pyrolysis unit to a final temperature of 800°C with a 10 minute delay at the final temperature. After the pyrolysis process of the selected wastes a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The highest concentration of methane, hydrogen and carbon monoxide were analyzed during the 4th gas sampling at a temperature of approx. 720–780°C. The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.</jats:p>

Topics
  • pyrolysis
  • Carbon
  • Hydrogen