Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aranda, Miguel A. G.

  • Google
  • 4
  • 31
  • 192

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 20234D nanoimaging of early age cement hydration28citations
  • 2019Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography28citations
  • 2018Multiscale understanding of tricalcium silicate hydration reactions123citations
  • 2017Structural variability in M<sup>2+</sup> 2-hydroxyphosphonoacetate moderate proton conductors13citations

Places of action

Chart of shared publication
Brun, Emmanuel
1 / 4 shared
Lukic, Bratislav
1 / 4 shared
Shirani, Shiva
1 / 6 shared
Santacruz, Isabel
3 / 3 shared
Inés, R. Salcedo
1 / 1 shared
Holler, Mirko
2 / 17 shared
Rack, Alexander
1 / 18 shared
Morales-Cantero, Alejandro
1 / 4 shared
Trtik, Pavel
2 / 26 shared
Cuesta, Ana
3 / 5 shared
Diaz, Ana
2 / 20 shared
Torre, Ángeles G. De La
1 / 2 shared
Lothenbach, Barbara
1 / 314 shared
De La Torre, Ángeles G.
1 / 1 shared
Vallcorba, Oriol
1 / 10 shared
Londono-Zuluaga, Diana
1 / 10 shared
Sanfelix, Susana G.
1 / 1 shared
Zea-Garcia, Jesus D.
1 / 4 shared
De La Torre, Angeles G.
1 / 1 shared
Dapiaggi, Monica
1 / 6 shared
Milla-Pérez, Diego F.
1 / 1 shared
Durán-Martín, Jonatan D.
1 / 1 shared
Rius, Jordi
1 / 9 shared
Demadis, Konstantinos D.
1 / 7 shared
Olivera-Pastor, Pascual
1 / 15 shared
Cabeza, Aurelio
1 / 7 shared
Losilla, Enrique R.
1 / 17 shared
Moreno-Real, Laureano
1 / 1 shared
Bazaga-García, Montse
1 / 14 shared
Salcedo, Inés R.
1 / 6 shared
Colodrero, Rosario M. P.
1 / 3 shared
Chart of publication period
2023
2019
2018
2017

Co-Authors (by relevance)

  • Brun, Emmanuel
  • Lukic, Bratislav
  • Shirani, Shiva
  • Santacruz, Isabel
  • Inés, R. Salcedo
  • Holler, Mirko
  • Rack, Alexander
  • Morales-Cantero, Alejandro
  • Trtik, Pavel
  • Cuesta, Ana
  • Diaz, Ana
  • Torre, Ángeles G. De La
  • Lothenbach, Barbara
  • De La Torre, Ángeles G.
  • Vallcorba, Oriol
  • Londono-Zuluaga, Diana
  • Sanfelix, Susana G.
  • Zea-Garcia, Jesus D.
  • De La Torre, Angeles G.
  • Dapiaggi, Monica
  • Milla-Pérez, Diego F.
  • Durán-Martín, Jonatan D.
  • Rius, Jordi
  • Demadis, Konstantinos D.
  • Olivera-Pastor, Pascual
  • Cabeza, Aurelio
  • Losilla, Enrique R.
  • Moreno-Real, Laureano
  • Bazaga-García, Montse
  • Salcedo, Inés R.
  • Colodrero, Rosario M. P.
OrganizationsLocationPeople

article

Structural variability in M<sup>2+</sup> 2-hydroxyphosphonoacetate moderate proton conductors

  • Milla-Pérez, Diego F.
  • Durán-Martín, Jonatan D.
  • Rius, Jordi
  • Demadis, Konstantinos D.
  • Olivera-Pastor, Pascual
  • Cabeza, Aurelio
  • Aranda, Miguel A. G.
  • Losilla, Enrique R.
  • Moreno-Real, Laureano
  • Bazaga-García, Montse
  • Salcedo, Inés R.
  • Colodrero, Rosario M. P.
Abstract

<jats:title>Abstract</jats:title><jats:p>The structural variability of two series of Mg<jats:sup>2+</jats:sup>- and Zn<jats:sup>2+</jats:sup>- 2-hydroxyphosphonoacetates have been studied in the range of 25–80°C and 95% relative humidity in order to correlate the structure with the proton conductivity properties. In addition to selected previously reported 1D, 2D and 3D materials, a new compound, KZn<jats:sub>6</jats:sub>(OOCCH(OH)PO<jats:sub>3</jats:sub>)<jats:sub>4</jats:sub>(OH)·5H<jats:sub>2</jats:sub>O (KZn<jats:sub>6</jats:sub>-HPAA-3D), has been prepared and thoroughly characterized. The crystal structure of this solid, solved ab initio from synchrotron X-ray powder diffraction data, consists of a negatively charged 3D framework with K<jats:sup>+</jats:sup> ions, as compensating counterions. It also contains water molecules filling the cavities in contrast to the potassium-free 3D anhydrous NH<jats:sub>4</jats:sub>Zn(OOCCH(OH)PO<jats:sub>3</jats:sub>) (NH<jats:sub>4</jats:sub>Zn-HPAA-3D). In the range of temperature studied, the 1D materials exhibit a 1D→2D solid-state transition. At 80°C and 95% RH, the 2D solids show moderate proton conductivities, between 2.1×10<jats:sup>−5</jats:sup> S·cm<jats:sup>−1</jats:sup> and 6.7×10<jats:sup>−5</jats:sup> S·cm<jats:sup>−1</jats:sup>. The proton conductivity is slightly increased by ammonia adsorption up to 2.6×10<jats:sup>−4</jats:sup> S·cm<jats:sup>−1</jats:sup>, although no ammonia intercalation was observed. As synthesized KZn<jats:sub>6</jats:sub>-HPAA-3D exhibits a low proton conductivity, 1.6×10<jats:sup>−6</jats:sup> S·cm<jats:sup>−1</jats:sup>, attributed to the basic character of the framework and a low mobility of water molecules. However, this solid transforms to the 2D phase, Zn(OOCCH(OH)PO<jats:sub>3</jats:sub>H)·2H<jats:sub>2</jats:sub>O, upon exposure to dry HCl(g), which enhances the proton conductivity with respect to the as-synthesized 2D material (4.5×10<jats:sup>−4</jats:sup> S·cm<jats:sup>−1</jats:sup>). On the other hand, NH<jats:sub>4</jats:sub>Zn-HPAA-3D exhibited a higher proton conductivity, 1.4×10<jats:sup>−4</jats:sup> S·cm<jats:sup>−1</jats:sup>, than the K<jats:sup>+</jats:sup> analog.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • phase
  • mobility
  • Potassium