Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grabowska, Małgorzata

  • Google
  • 2
  • 5
  • 40

Adam Mickiewicz University in Poznań

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024In vitro anticancer activity of melanin-like nanoparticles for multimodal therapy of glioblastoma3citations
  • 2019Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme.37citations

Places of action

Chart of shared publication
Emerson Coy, Phd, Dsc.
1 / 38 shared
Żebrowska, Klaudia
1 / 3 shared
Mrówczyński, Radosław
1 / 6 shared
Grzeskowiak, Bartosz
1 / 1 shared
Rolle, Katarzyna
1 / 1 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Emerson Coy, Phd, Dsc.
  • Żebrowska, Klaudia
  • Mrówczyński, Radosław
  • Grzeskowiak, Bartosz
  • Rolle, Katarzyna
OrganizationsLocationPeople

article

In vitro anticancer activity of melanin-like nanoparticles for multimodal therapy of glioblastoma

  • Emerson Coy, Phd, Dsc.
  • Żebrowska, Klaudia
  • Grabowska, Małgorzata
  • Mrówczyński, Radosław
  • Grzeskowiak, Bartosz
  • Rolle, Katarzyna
Abstract

<jats:title>Abstract</jats:title><jats:p>Glioblastoma (GBM) is one of the most aggressive and hard to treat cancers. Traditional anti-cancer treatment methods have low efficiency and the lifespan after diagnosis is only 12–18 months. Brain tumor cells overexpress many proteins that play an important role in tumor progression and can be used as therapeutic targets. One of the promising approaches in cancer treatment is down-regulation of an extracellular matrix glycoprotein – Tenascin-C (TN-C) through RNA interference therapy. However, the effective delivery of double stranded RNA with one strand complementary to TN-C mRNA sequence is difficult due to rapid degradation by nucleases and low intracellular uptake. Polydopamine (PDA), a biomimetic polymer characterized by high biocompatibility and simple modification ability, is commonly used in nanobiomedicine to create a drug/gene delivery vehicle. Furthermore, photothermal characteristics of this polymer enable its application in photothermal therapy (PTT), which is a great option for cancer treatment. Here we synthesize PDA nanoparticles (NPs) coated with polyamidoamine dendrimers generation 3.0 (DD3.0) for therapeutic anti-TN-C RNA and doxorubicin delivery. As prepared PDA@DD3.0 NPs are then used in combined drug delivery, gene silencing, and PTT of GBM. The obtained materials are analyzed in terms of physicochemical and photothermal properties as well as their cytotoxicity, using human GBM cells. The results demonstrate that the obtained nanocarriers are effective non-viral vehicle for combined therapeutic approach for killing glioma cells <jats:italic>via</jats:italic> anti-TN-C RNA delivery and combined chemo-PTT therapy (CT-PTT). The application of PDA@DD3.0 NPs contributed to the 3-fold reduction in the proliferation rate of GBM cells, a decrease in the level of TN-C expression (by 30%) and a reduction in the number of viable cells by up to 20%.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • dendrimer
  • biocompatibility