Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nasri, Atefeh

  • Google
  • 2
  • 6
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Design and optimization of a TiO<sub>2</sub>/RGO-supported epoxy multilayer microwave absorber by the modified local best particle swarm optimization algorithm5citations
  • 2023Sensing Properties of g-C3N4/Au Nanocomposite for Organic Vapor Detection17citations

Places of action

Chart of shared publication
Eslamipanah, Mahtab
1 / 2 shared
Jaleh, Babak
2 / 4 shared
Karami, Mohammad Reza
1 / 1 shared
Rhee, Kyong Yop
1 / 9 shared
Daneshnazar, Milad
1 / 1 shared
Varma, Rajender
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Eslamipanah, Mahtab
  • Jaleh, Babak
  • Karami, Mohammad Reza
  • Rhee, Kyong Yop
  • Daneshnazar, Milad
  • Varma, Rajender
OrganizationsLocationPeople

article

Design and optimization of a TiO<sub>2</sub>/RGO-supported epoxy multilayer microwave absorber by the modified local best particle swarm optimization algorithm

  • Eslamipanah, Mahtab
  • Jaleh, Babak
  • Karami, Mohammad Reza
  • Rhee, Kyong Yop
  • Nasri, Atefeh
Abstract

<jats:title>Abstract</jats:title><jats:p>Microwave absorbers have many applications in medical, industrial, and military devices. Polymeric composites including carbon-based filler can be used as lightweight absorbers with high electromagnetic (EM) wave absorption performance. Hence, multilayer microwave absorbers were designed using titanium dioxide (TiO<jats:sub>2</jats:sub>)/reduced graphene oxide (RGO)/epoxy nanocomposites with different weight percentages manufactured using refluxing and annealing methods. The characterization of nanocomposite indicated thin layers of TiO<jats:sub>2</jats:sub>/RGO as divided sheets in epoxy. The EM properties of the nanocomposites were examined using the Nicolson-Ross-Weir (NRW) detection method. The S-parameters were measured using PNA-N5222A Microwave Network Analyzer. The multilayer absorber software was designed based on the modified local best particle swarm optimization algorithm by MATLAB software, in which the material and thickness of layers were optimized with two cost functions in X-band frequencies. The first cost function seeks to reach the best absorption bandwidth, and the second cost function seeks to reach the maximum average return loss (RL) of the frequency range of 8.2–12.4 GHz. A maximum bandwidth with an RL of less than −12.81 dB was obtained with a thickness of 2.4 mm. A maximum average RL of −22.1 dB was obtained with a thickness of 2.6 mm. The maximum absorption peak was observed with a thickness of 2.5 mm with −62.82 dB at a frequency of 10.86 GHz.</jats:p>

Topics
  • nanocomposite
  • Carbon
  • laser emission spectroscopy
  • titanium
  • annealing