People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Safaei, Babak
Eastern Mediterranean University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Enhancing tensile strength, adhesive joining of CFPEEK and microstructure properties of Epoxy by Nd2O3 rare-earth nanoparticles reinforcementcitations
- 2024Assessment of friction stir spot welding of AA5052 joints via machine learningcitations
- 2024Dynamic effect of ply angle and fiber orientation on composite platescitations
- 2023Prediction of elastic properties of thermoplastic composites with natural fiberscitations
- 2023Prediction of lap shear strength of GNP and TiO2/epoxy nanocomposite adhesivescitations
- 2022Prediction of properties of friction stir spot welded joints of AA7075-T651/Ti-6Al-4V alloy using machine learning algorithmscitations
- 2022Recent developments in tensile properties of friction welding of carbon fiber-reinforced composite: A review
- 2022An experimental and metamodeling approach to tensile properties of natural fibers compositescitations
- 2021The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural propertiescitations
- 2021Calcium carbonate nanoparticles effects on cement plast propertiescitations
- 2021Modeling and simulation of the elastic properties of natural fiber-reinforced thermosetscitations
- 2021Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayercitations
- 2015Molecular Dynamics Simulation For Buckling Analysis At Nanocomposite Beams
Places of action
Organizations | Location | People |
---|
article
The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural properties
Abstract
<jats:title>Abstract</jats:title><jats:p>The present study focused on two dissimilar metal alloys: AA7075-T651 and Ti-6Al-4V alloys with additional carbon fiber-reinforced polymer (CFRP) as an interlayer were welded together by friction stir spot welding (FSSW). The effect of welding parameters (rotational speed and dwell time) and carbon fiber-reinforced polymer on mechanical and microstructural properties of a weld joint was investigated. The obtained results explore the parametric effects on mechanical properties of the weld joint. The maximum tensile shear load 2597.8 N was achieved at the rotational speed of 2,000 rpm and dwell time of 10 s. While at the same rotational speed, 54.7% reduction in the tensile shear load was attained at shorter dwell time of 5 s. Therefore, dwell time plays an important role in the tensile shear load of a weld joint. The scanning electron microscope (SEM-EDS) results show the formation of intermetallic compound of Ti<jats:sub>3</jats:sub>Al and Ti-Al-C that significantly affect the mechanical and microstructural properties of the weld joint. Moreover, the effect of the rotational speed on micro-hardness was found at significant than dwell time. The micro-hardness of the weld joint increase by 18.90% in the keyhole rather than the stir zone and the thermomechanical affected zone, which might be due to the presence of ternary (Ti-Al-C) intermetallic compound.</jats:p>