Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Torvinen, Katariina

  • Google
  • 9
  • 23
  • 94

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2020Feasibility of foam forming technology for producing wood plastic composites11citations
  • 2018Detection of iron and iron-cobalt labeled cellulose nanofibrils using ICP-OES and XμCT6citations
  • 2017Novel biobased micro- and nanomaterials in porous foam formed structurescitations
  • 2016Highly porous fibre structures and biocomposites made of mixtures of wood, biopolymers and hempcitations
  • 2014Drying of Pigment-Cellulose Nanofibril Substrates9citations
  • 2014Flexible pigment-nanocellulose substrate for printed electronics with good thermal tolerancecitations
  • 2013Flexible bio-based pigment-nanocellulose substrate for printed electronics with good thermal tolerancecitations
  • 2012Flexible bio-based pigment nanocellulose substrate for printed electronicscitations
  • 2012Smooth and flexible filler-nanocellulose composite structure for printed electronics applications68citations

Places of action

Chart of shared publication
Keränen, Janne T.
1 / 7 shared
Jetsu, Petri
1 / 8 shared
Immonen, Kirsi
2 / 29 shared
Lappalainen, Timo
2 / 7 shared
Kenttä, Eija
1 / 14 shared
Turpeinen, Tuomas
1 / 10 shared
Ketoja, Jukka A.
1 / 17 shared
Paajanen, Arja
1 / 1 shared
Sirviö, Jari
1 / 2 shared
Pöhler, Tiina
2 / 6 shared
Lahtinen, Panu
1 / 13 shared
Ketoja, Jukka
2 / 2 shared
Timofeev, Oleg
1 / 1 shared
Sievänen, Jenni
5 / 21 shared
Kaljunen, Timo
1 / 1 shared
Kouko, Jarmo
1 / 14 shared
Mattila, Tomi
3 / 11 shared
Hellen, Erkki
3 / 3 shared
Hassinen, Tomi
2 / 10 shared
Majumdar, Himandri
1 / 1 shared
Hellén, Erkki
1 / 1 shared
Alastalo, Ari
1 / 22 shared
Hjelt, Tuomo
1 / 6 shared
Chart of publication period
2020
2018
2017
2016
2014
2013
2012

Co-Authors (by relevance)

  • Keränen, Janne T.
  • Jetsu, Petri
  • Immonen, Kirsi
  • Lappalainen, Timo
  • Kenttä, Eija
  • Turpeinen, Tuomas
  • Ketoja, Jukka A.
  • Paajanen, Arja
  • Sirviö, Jari
  • Pöhler, Tiina
  • Lahtinen, Panu
  • Ketoja, Jukka
  • Timofeev, Oleg
  • Sievänen, Jenni
  • Kaljunen, Timo
  • Kouko, Jarmo
  • Mattila, Tomi
  • Hellen, Erkki
  • Hassinen, Tomi
  • Majumdar, Himandri
  • Hellén, Erkki
  • Alastalo, Ari
  • Hjelt, Tuomo
OrganizationsLocationPeople

article

Detection of iron and iron-cobalt labeled cellulose nanofibrils using ICP-OES and XμCT

  • Lappalainen, Timo
  • Torvinen, Katariina
  • Kenttä, Eija
  • Turpeinen, Tuomas
Abstract

When studying the properties of cellulose nanofibrils (CNF) enriched fiber products, it is essential to be able to determine the retention and the spatial distribution of the CNF inside the end-product. That is, to determine how much and where the CNF has been attached. As the CNF and cellulose fibers share the same density and chemical composition, labeling of the CNF is required to distinguish them from each other. In this work, we have applied iron and iron-cobalt -labeling. Labeling with iron is more desirable because of the carcinogenic and toxic properties of cobalt chloride. The benefits of our labeling method are the possibility to determine the retention of the labeled nanocellulose using inductively coupled plasma optical emission spectroscopy (ICP-OES), and to define the spatial distribution using X-ray micro-computed tomographic (XμCT). With XμCT we were able to measure fairly large samples (2 cm × 5 cm × 5 cm). Our study found that the retention of iron-labeled CNF was about 95 % and that of iron-cobalt labeled CNF was 84-94 %. Labeling of CNF improves the contrast of X-ray images. Labeled CNF is attached to fiber network also in the inner structures of the sample. Furthermore, when making thick porous structures using cationic starch, there might be agglomerates in the sample that cannot be visually detected by looking the sample.

Topics
  • porous
  • density
  • impedance spectroscopy
  • tomography
  • chemical composition
  • cobalt
  • iron
  • cellulose
  • atomic emission spectroscopy