Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Talamas Simola, Enrico

  • Google
  • 2
  • 13
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THz2citations
  • 2024High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THz2citations

Places of action

Chart of shared publication
Campagna, Elena
2 / 2 shared
Di Gaspare, Luciana
1 / 2 shared
Baldassarre, Leonetta
2 / 7 shared
Virgilio, Michele
2 / 9 shared
Berkmann, Fritz
2 / 2 shared
Capellini, Giovanni
2 / 26 shared
Venanzi, Tommaso
2 / 3 shared
Ortolani, Michele
2 / 7 shared
Corley-Wiciak, Cedric
2 / 10 shared
Nicotra, Giuseppe
2 / 14 shared
De Seta, Monica
1 / 2 shared
Gaspare, Luciana Di
1 / 1 shared
Seta, Monica De
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Campagna, Elena
  • Di Gaspare, Luciana
  • Baldassarre, Leonetta
  • Virgilio, Michele
  • Berkmann, Fritz
  • Capellini, Giovanni
  • Venanzi, Tommaso
  • Ortolani, Michele
  • Corley-Wiciak, Cedric
  • Nicotra, Giuseppe
  • De Seta, Monica
  • Gaspare, Luciana Di
  • Seta, Monica De
OrganizationsLocationPeople

article

High-quality CMOS compatible n-type SiGe parabolic quantum wells for intersubband photonics at 2.5–5 THz

  • Campagna, Elena
  • Talamas Simola, Enrico
  • Baldassarre, Leonetta
  • Virgilio, Michele
  • Berkmann, Fritz
  • Capellini, Giovanni
  • Venanzi, Tommaso
  • Ortolani, Michele
  • Corley-Wiciak, Cedric
  • Nicotra, Giuseppe
  • Gaspare, Luciana Di
  • Seta, Monica De
Abstract

<jats:title>Abstract</jats:title><jats:p>A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Ge<jats:sub><jats:italic>x</jats:italic></jats:sub> alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile. The absorption spectrum, measured by means of Fourier transform infrared spectroscopy, revealed a single peak with a full width at half maximum at low and room temperature of about 2 and 5 meV, respectively, associated to degenerate intersubband transitions. The energy of the absorption resonance scales with the inverse of the well width, covering the 2.5–5 THz spectral range, and is almost independent of temperature and doping, as predicted for a parabolic confining potential. On the basis of these results, we discuss the perspective observation of THz strong light–matter coupling in this silicon compatible material system, leveraging on intersubband transitions embedded in all-semiconductor microcavities.</jats:p>

Topics
  • impedance spectroscopy
  • semiconductor
  • Silicon
  • Fourier transform infrared spectroscopy
  • chemical vapor deposition