People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sun, Kai
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022VO 2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applicationscitations
- 2022Room temperature phase transition of W-doped VO 2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2022Room temperature phase transition of W-doped VO2 by atomic layer deposition on 200 mm Si wafers and flexible substratescitations
- 2022VO2metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applicationscitations
- 2020Multi-stack insulator to minimise threshold voltage drift in ZnO FET sensors operating in ionic solutionscitations
- 2012Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applicationscitations
- 2012Effect of an oxide cap layer and fluorine implantation on the metal-induced lateral crystallization of amorphous siliconcitations
Places of action
Organizations | Location | People |
---|
article
VO2metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications
Abstract
<p>Smart radiative cooling devices based on thermochromic materials such as vanadium dioxide (VO2) are of practical interest for temperature regulation and artificial homeostasis, i.e., maintaining stable equilibrium conditions for survival, both in terrestrial and space applications. In traditional solar reflector configurations, solar absorption in the VO2 layer is a performance limiting factor due to the multiple reflections of sunlight in the stack. Here, we demonstrate a visually transparent, smart radiator panel with reduced solar absorption. An Al-doped ZnO transparent conducting oxide layer acts as a frequency selective infrared back-reflector with high transmission of solar radiation. In this study we make use of high-quality VO2 thin films deposited using atomic layer deposition and optimized annealing process. Patterning of the VO2 layer into a metasurface results in a further reduction of the solar absorption parameter α to around 0.3, while exhibiting a thermal emissivity contrast Δϵ of 0.26 by exploiting plasmonic enhancement effects. The VO2 metasurface provides a visual spectrum transmission of up to 62%, which is of interest for a range of applications requiring visual transparency. The transparent smart metasurface thermal emitter offers a new approach for thermal management in both space and terrestrial radiative cooling scenarios. </p>