People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alonso-Ramos, Carlos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Controlling the Modal Confinement in Silicon Nanophotonic Waveguides through Dual‐Metamaterial Engineeringcitations
- 2022Heterogeneous Integration of Doped Crystalline Zirconium Oxide for Photonic Applicationscitations
- 2020Erbium-doped oxide for optical gain on hybrid silicon photonics platforms (Student Paper)
- 202040 Gbps heterostructure germanium avalanche photo receiver on a silicon chipcitations
- 202040 Gbps heterostructure germanium avalanche photo receiver on a silicon chipcitations
- 2020Potential for sub-mm long erbium-doped composite silicon waveguide DFB laserscitations
- 2020Third Order Nonlinear Optical Susceptibility of Crystalline Oxide Yttria-Stabilized Zirconiacitations
- 2020Silicon-germanium receivers for short-waveinfrared optoelectronics and communications High-speed silicon-germanium receivers (invited review)citations
- 2020Silicon-germanium receivers for short-waveinfrared optoelectronics and communications High-speed silicon-germanium receivers (invited review)citations
- 2020Silicon-germanium receivers for short-waveinfrared optoelectronics and communications ; Silicon-germanium receivers for short-waveinfrared optoelectronics and communications: High-speed silicon-germanium receiverscitations
- 2019Towards optical amplification in complex functional oxides: exploring optical gain in erbium-doped yttria-stabilized zirconia waveguidescitations
- 2019Erbium-doped Yttria-stabilized Zirconia thin layers for photonic applications
- 2019Nonlinear third order silicon photonics enabled by dispersion and subwavelength engineeringcitations
- 2019Nonlinear third order silicon photonics enabled by dispersion and subwavelength engineeringcitations
- 2018High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applicationscitations
- 2018High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applicationscitations
- 2018Nonlinear optical properties of integrated GeSbS chalcogenide waveguidescitations
- 2017Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2017Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2017Third Order Nonlinear Properties of GeSbS Chalcogenide Waveguides (poster)
- 2017Linear and Third Order Nonlinear Optical Properties of GeSbS Chalcogenide Integrated Waveguides (Orale)citations
- 2016Integration of Carbon Nanotubes in Silicon Strip and Slot Waveguide Micro-Ring Resonatorscitations
- 2016Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2016Coupling of semiconductor carbon nanotubes emission with silicon photonic microring resonators
- 2016Data for Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding
- 2016Oxides on Silicon and Sapphire substrates for photonic applications
- 2016Oxides on Silicon and Sapphire substrates for photonic applications
- 2016Integration of carbon nanotubes in slot waveguides (Conference Presentation)
Places of action
Organizations | Location | People |
---|
article
Silicon-germanium receivers for short-waveinfrared optoelectronics and communications High-speed silicon-germanium receivers (invited review)
Abstract
Integrated silicon nanophotonics has rapidly established itself as intriguing research field, whose outlets impact numerous facets of daily life. Indeed, nanophotonics has propelled many advances in optoelectronics, information and communication technologies, sensing and energy, to name a few. Silicon nanophotonics aims to deliver compact and high-performance components based on semiconductor chips leveraging mature fabrication routines already developed within the modern microelectronics. However, the silicon indirect bandgap, the centrosymmetric nature of its lattice and its wide transparency window across optical telecommunication wavebands hamper the realization of essential functionalities, including efficient light generation/amplification, fast electro-optical modulation, and reliable photodetection. Germanium, a well-established complement material in silicon chip industry, has a quasi-direct energy band structure in this wavelength domain. Germanium and its alloys are thus the most suitable candidates for active functions, i.e. bringing them to close to the silicon family of nanophotonic devices. Along with recent advances in silicon-germanium-based lasers and modulators, shortwave-infrared receivers are also key photonic chip elements to tackle cost, speed and energy consumption challenges of exponentially growing data traffics within next-generation systems and networks. Herein, we provide a detailed overview on the latest development in nanophotonic receivers based on silicon and germanium, including material processing, integration and diversity of device designs and arrangements. Our Review also emphasizes surging applications in optoelectronics and communications and concludes with challenges and perspectives potentially encountered in the foreseeable future.