People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raza, Søren
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Gallium Phosphide Nanoparticles for Low‐Loss Nanoantennas in Visible Rangecitations
- 2022Computational Discovery and Experimental Demonstration of Boron Phosphide Ultraviolet Nanoresonatorscitations
- 2022Mode Hybridization in Silicon Core–Gold Shell Nanospherecitations
- 2021Nanoelectromechanical modulation of a strongly-coupled plasmonic dimercitations
- 2018DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamondcitations
- 2017Broadband infrared absorption enhancement by electroless-deposited silver nanoparticlescitations
- 2016Electron energy-loss spectroscopy of branched gap plasmon resonatorscitations
- 2016Higher-order surface plasmons resonances and their disappearance in fewnanometer silver nanoparticles
- 2016Higher-order surface plasmons resonances and their disappearance in fewnanometer silver nanoparticles
- 2014Experimental study of nonlocal effects in plasmonic structures with Electron Energy Loss Spectroscopy
- 2013Blueshift of the surface plasmon resonance studied with Electron Energy Loss Spectroscopy (EELS)
- 2013Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effectscitations
Places of action
Organizations | Location | People |
---|
article
Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles
Abstract
Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution<br/>for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of nearinfrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.