Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Balasubramanian, Visvalingam

  • Google
  • 3
  • 9
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Metallurgical characteristics of <scp>AA6061</scp> aluminium and <scp>AZ31B</scp> magnesium dissimilar joints by fusion welding technique2citations
  • 2023Tensile shear fracture load bearing capability, softening of HAZ and microstructural characteristics of resistance spot welded DP-1000 steel joints18citations
  • 2022Mechanical and Metallurgical Characteristics of Rotary Friction Welded Low Carbon Steel Plate/Rod Joints8citations

Places of action

Chart of shared publication
Ramaswamy, Addanki
1 / 1 shared
Dwivedy, Maheshwar
1 / 1 shared
Malarvizhi, Sudersanan
1 / 1 shared
Bellamkonda, Prasanna Nagasai
1 / 1 shared
Kavitha, Subramanian
1 / 1 shared
Rajalingam, Paluchamy
1 / 1 shared
Dhamotharakannan, Thirumalaikkannan
1 / 1 shared
Sivaraj, Paramasivam
1 / 2 shared
Seeman, M.
1 / 5 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Ramaswamy, Addanki
  • Dwivedy, Maheshwar
  • Malarvizhi, Sudersanan
  • Bellamkonda, Prasanna Nagasai
  • Kavitha, Subramanian
  • Rajalingam, Paluchamy
  • Dhamotharakannan, Thirumalaikkannan
  • Sivaraj, Paramasivam
  • Seeman, M.
OrganizationsLocationPeople

article

Tensile shear fracture load bearing capability, softening of HAZ and microstructural characteristics of resistance spot welded DP-1000 steel joints

  • Kavitha, Subramanian
  • Rajalingam, Paluchamy
  • Balasubramanian, Visvalingam
Abstract

<jats:title>Abstract</jats:title><jats:p>The main objective of this investigation is to enhance the tensile shear fracture load (TSFL) bearing capability and minimize softening in heat affected zone (HAZ) of resistance spot welded DP-1000 steel spot joints for automotive applications. The lap tensile and cross tensile shear fracture load tests (LTSFL and CTSFL) were conducted. The process parameters were optimized using numerical and graphical optimization techniques to maximize the TSFL capability of spot joints. The microstructure of spot joints was studied using optical microscopy and correlated to TSFL and hardness of spot joints. Results showed that DP-1000 steel spot joints made using the welding power of 70 W, welding time of 1.0 s, electrode pressure of 4.25 MPa showed maximum LTSFL of 22 kN and CTSFL of 9.1 kN. The parametric optimization showed 46.66, 45.77, 22.33 and 9.87% increase in LTSFL, CTSFL, nugget zone hardness and HAZ hardness of DP-1000 steel spot joints. The higher TSFL and nugget hardness of spot joints is mainly attributed to the evolution of finer martensitic sandwiching ferrite phases in nugget zone and lower softening of HAZ than other joints. Welding power showed significant influence on TSFL of spot joints followed by welding time and electrode pressure.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • steel
  • hardness
  • optical microscopy