Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Srivastava, Nitin

  • Google
  • 2
  • 2
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Effects of MgO Powder addition on mechanical, physical and thermal properties of Al waste bagasse composite6citations
  • 2019Development of Green Hybrid Metal Matrix Composite using Agricultural Waste Bagasse as Reinforcement- A Review6citations

Places of action

Chart of shared publication
Saxena, Ambuj
1 / 4 shared
Dwivedi, Shashi Prakash
2 / 9 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Saxena, Ambuj
  • Dwivedi, Shashi Prakash
OrganizationsLocationPeople

article

Effects of MgO Powder addition on mechanical, physical and thermal properties of Al waste bagasse composite

  • Saxena, Ambuj
  • Dwivedi, Shashi Prakash
  • Srivastava, Nitin
Abstract

<jats:title>Abstract</jats:title><jats:p>Environmental pollution from various industries is a serious issue in most countries. Bagasse is a waste product from sugar factory industries. Bagasse pollutes the soil and the air. In the present investigation, an attempt has been made to utilize bagasse waste as a primary reinforcement material in the development of an aluminum-based metal matrix composite. Magnesium oxide (MgO) powder was mixed with bagasse ash to enhance the wettability of the bagasse ash and the aluminum matrix. The microstructure results of the bagasse reinforced hybrid composite showed a proper distribution of carbonized bagasse ash and MgO powder in the aluminum base matrix material. Minimum porosity and minimum corrosion loss were measured at 1.43 % and 0.05 mg, respectively for a selected composition Al+2.5 wt.-% carbonized bagasse ash +12.5 wt.-% MgO hybrid metal matrix composite. The composition of the Al+10 wt.-% carbonized bagasse ash metal matrix composite exhibited the maximum specific strength of 39.59 kN × m × kg-1 which is much better than than that of the base matrix material. In addition, as the percentage of reinforcement in the casting increases, the cost and density of the final cast composite reinforced by bagasse, continually decrease. Sample G<jats:sub>13</jats:sub> (Al+ 5 wt.-% carbonized bagasse ash + 10 wt.-% MgO powder) shows a small change in dimensions due to thermal expansion.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • corrosion
  • Magnesium
  • Magnesium
  • aluminium
  • strength
  • composite
  • thermal expansion
  • casting
  • porosity
  • magnesium oxide