People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manickam, Tamilselvan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of stacking sequence on mechanical, water absorption, and biodegradable properties of novel hybrid composites for structural applications
Abstract
<jats:title>Abstract</jats:title><jats:p>This study used a hand layup process to create tri-layer hybrid composites composed of snake grass fiber (SGF) and jute fiber (JF). Two types of hybrid composites were investigated: jute/snake grass/jute (J/S/J) and snake grass/jute/snake grass (S/J/S). The fabricated composites were subjected to mechanical characterization and water absorption studies to verify their compatibility for various applications. The outcome revealed that the J/S/J hybrid sample shows the highest tensile and flexural strength at 68.46 and 78.62 MPa, respectively. This is due to stacking the maximum-strength JF as an exterior layer in the hybrid J/S/J sample. Meanwhile, the S/J/S composite shows a very high impact strength value of 4.45 kJ/mm<jats:sup>2</jats:sup> due to the placement of SGF at the outermost layer. It leads to absorbing more impact energy at sudden load applications. Water absorption studies revealed that the S/J/S composite absorbed more moisture than the J/S/J composite. Furthermore, the S/J/S composite exhibited greater biodegradability than the J/S/J composite based on soil burial experiments. From this study, it can be concluded that the J/S/J composite is suitable for structural applications because it has higher tensile and flexural qualities. In contrast, the S/J/S composite can be employed under damping conditions because it has better impact strength.</jats:p>