Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pulvermacher, Samuel

  • Google
  • 3
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Analysis of Phase-Specific Strain Pole Figures for Duplex Steels under Elasto-Plastic Uniaxial Tension—Experiment vs. EPSC Modelling1citations
  • 2021Numerical characterization of residual stresses in a four-point-bending experiment of textured duplex stainless steel3citations
  • 2021Experimental and Numerical Investigation of the Surface Layer Conditions after Carbonitriding of Powder Metallurgical Steels. Part 2: Surface Layer States in Components of Graded Porositycitations

Places of action

Chart of shared publication
Prahs, Andreas
1 / 6 shared
Cabeza, Sandra
1 / 27 shared
Hofmann, Michael
1 / 25 shared
Pirling, Thilo
1 / 15 shared
Gibmeier, Jens
1 / 26 shared
Liu, Hangning
1 / 1 shared
Loebich, Florian
1 / 1 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Prahs, Andreas
  • Cabeza, Sandra
  • Hofmann, Michael
  • Pirling, Thilo
  • Gibmeier, Jens
  • Liu, Hangning
  • Loebich, Florian
OrganizationsLocationPeople

article

Experimental and Numerical Investigation of the Surface Layer Conditions after Carbonitriding of Powder Metallurgical Steels. Part 2: Surface Layer States in Components of Graded Porosity

  • Pulvermacher, Samuel
Abstract

<jats:title>Abstract</jats:title><jats:p>Case hardening processes such as carbonitriding can be used to improve the performance of powder metallurgical (PM) structural components. The partially open porosity of these components leads to a significant increase in diffusion, which in turn leads to a change in the element gradient in the surface layer (and consequently the surface layer state) compared to melting metallurgic materials. Within the scope of a two-part work, the surface layer states in common densities are investigated after the case hardening process. The present part 2 comprises the characterisation of the resulting surface layer states depending on the carbon and nitrogen profile and the tempering heat treatment. Through the deep rolling and the subsequent carbonitriding treatment, hardness of up to 850 HV0.1, retained austenite contents of up to 25 vol-% and residual stresses of up to –300 MPa are determined across densities. The extensions to the numerical models described in this paper enable the FE model to predict the surface layer states in a wide range of process combinations and densities with an error tolerance of ±20 %.</jats:p>

Topics
  • surface
  • Carbon
  • Nitrogen
  • steel
  • hardness
  • porosity
  • tempering