Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Straže, Aleš

  • Google
  • 2
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Bonding Performance of Melamine–Urea–Formaldehyde and Polyurethane Adhesives for Laminated Hybrid Beams and Their Selected Mechanical Properties1citations
  • 2019The use of ultrasound velocity and damping for the detection of internal structural defects in standing trees of European beech and Norway spruce10citations

Places of action

Chart of shared publication
Šernek, Milan
1 / 8 shared
Šega, Bogdan
1 / 2 shared
Huber, Johannes Albert Josef
1 / 2 shared
Fašalek, Andrej
1 / 1 shared
Chart of publication period
2023
2019

Co-Authors (by relevance)

  • Šernek, Milan
  • Šega, Bogdan
  • Huber, Johannes Albert Josef
  • Fašalek, Andrej
OrganizationsLocationPeople

article

The use of ultrasound velocity and damping for the detection of internal structural defects in standing trees of European beech and Norway spruce

  • Straže, Aleš
Abstract

<jats:title>Abstract</jats:title><jats:p>Field measurements were carried out to assess the feasibility of ultrasound velocity and damping for the non-invasive testing of standing trees. A total of 87 trees of European beech (<jats:italic>Fagus sylvatica</jats:italic> L.) and 68 trees of Norway spruce (<jats:italic>Picea abies</jats:italic> Karst.) were measured in the field, felled and assessed individually for the presence of red heartwood or butt rot. The field assessment of these internal structural defects at the stump level (SL) of the trees was compared with the ultrasound measurements recorded at two tree heights [(i.e. at the SL and 0.5 m above the stump level (ASL)] and in several directions, all perpendicular (PP) to the tree stem. Lower ultrasound velocity and higher damping were found in both species with the presence of internal defects in both the radial and tangential directions of the tree stem. The diameter at breast height (DBH) had a varying effect on both ultrasound velocity and damping. A binary logistic regression was used to test the potential of ultrasound velocity and damping to predict the presence of internal defects. Both the approaches offer similar levels of prediction accuracy (0.72 and 0.76 in beech, and 0.83 and 0.82 in spruce). Due to the significant reduction in measuring time when using ultrasound damping only, this principle is recommended for the detection of red heartwood in beech trees and butt rot in spruce trees.</jats:p>

Topics
  • impedance spectroscopy
  • defect