People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ando, Daisuke
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023NbTe<sub>4</sub> Phase‐Change Material: Breaking the Phase‐Change Temperature Balance in 2D Van der Waals Transition‐Metal Binary Chalcogenidecitations
- 2022Application of deep neural network learning in composites designcitations
- 2019Thermal stability of lignin in ground pulp (GP) and the effect of lignin modification on GP’s thermal stability: TGA experiments with dimeric lignin model compounds and milled wood ligninscitations
- 2018Understanding the fast phase-change mechanism of tetrahedrally bonded Cu 2 GeTe 3 :Comprehensive analyses of electronic structure and transport phenomenacitations
- 2018Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3citations
Places of action
Organizations | Location | People |
---|
article
Thermal stability of lignin in ground pulp (GP) and the effect of lignin modification on GP’s thermal stability: TGA experiments with dimeric lignin model compounds and milled wood lignins
Abstract
<jats:title>Abstract</jats:title><jats:p>For ground pulp (GP) utilization in wood fiber composites as reinforced material, its thermal behavior is relevant. The contribution of lignin to thermal performance of GP from <jats:italic>Pinus densiflora</jats:italic> was the focus of the present study. Dimeric lignin model compounds and isolated milled wood lignins (MWLs) from three sources were submitted for thermogravimetric analysis (TGA). The temperatures leading to 1% weight loss (T per 1% WL) for the material were determined. The thermal stability of β-O-4 models was the lowest. Among the MWLs, the abaca MWL with its high β-O-4 content was the least thermostable. An acetylated nonphenolic β-O-4 lignin model compound showed that acetylation improves the thermal stability of this type of dimeric models. The acetylation of benzylic OH groups in β-O-4 linkages is especially relevant for the thermal resistance, which was also shown based on pre-acetylated benzylic OH groups in the GP before the total acetylation.</jats:p>