People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dubois, Philippe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2011Novel polyesteramide-based di- and triblock copolymerscitations
- 2008Controlled synthesis of amphiphilic block copolymers based on polyester and poly(amino methacrylate)citations
- 2008Designing polylactide/clay nanocomposites for textile applicationscitations
- 2008Undecyltin trichloride grafted onto cross-linked polystyrenecitations
- 2008CH-π interactions as the driving force for silicone-based nanocomposites with exceptional propertiescitations
- 2007(Plasticized) Polylactide/clay nanocomposite textilecitations
- 2007Polylactide compositions. Part 1citations
- 2007Copolymerization of vinyl acetate with 1-octene and ethylene by cobalt-mediated radical polymerizationcitations
- 2006Copper-based supported catalysts for the atom transfer radical polymerization of methyl methacrylatecitations
- 2005Polylactide/montmorillonite nanocompositescitations
- 2005(Plasticized) polylactide/(organo-)clay nanocomposites by in situ intercalative polymerizationcitations
- 2005Nickel-catalyzed supported ATRP of methyl methacrylate using cross-linked polystyrene triphenylphosphine as ligandcitations
- 2004End-grained wood-polyurethane composites, 1 synthesis, morphology and characterizationcitations
- 2004Synthesis of melt-stable and semi-crystalline poly(1,4-dioxan-2-one) by ring-opening (co)polymerisation of 1,4-dioxan-2-one with different lactonescitations
- 2004Supported nickel bromide catalyst for Atom Transfer Radical Polymerization (ATRP) of methyl methacrylatecitations
- 2004Diblock copolymers based on 1,4-dioxan-2-one and ε-caprolactonecitations
- 2003Intercalative polymerization of cyclic esters in layered silicatescitations
- 2003Biodegradation of poly(ε-caprolactone)/starch blends and composites in composting and culture environmentscitations
- 2003Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerizationcitations
- 2002New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonitescitations
- 2001Poly(ϵ-caprolactone) layered silicate nanocompositescitations
- 2001Some thermodynamic, kinetic, and mechanistic aspects of the ring-opening polymerization of 1,4-dioxan-2-one initiated by Al(OiPr)3 in bulkcitations
- 2001Mechanisms and kinetics of thermal degradation of poly(ε-caprolactone)citations
- 2000New developments on the ring opening polymerisation of polylactidecitations
Places of action
Organizations | Location | People |
---|
article
Poly(ϵ-caprolactone) layered silicate nanocomposites
Abstract
<p>Nanocomposites based on biodegradable poly(e-caprolactone) (PCL) and layered silicates (montmorillonite) modified by various alkylammonium cations were prepared by melt intercalation. Depending on whether the ammonium cations contain non-functional alkyl chains or chains terminated by carboxylic acid or hydroxyl functions, microcomposites or nanocomposites were recovered as shown by X-ray diffraction and transmission electron microscopy. Mechanical and thermal properties were examined by tensile testing and thermogravimetric analysis. The layered silicate PCL nanocomposites exhibited some improvement of the mechanical properties (higher Young's modulus) and increased thermal stability as well as enhanced flame retardant characteristics as result of a charring effect. This communication aims at reporting that the formation of PCL-based nanocomposites strictly depends on the nature of the ammonium cation and its functionality, but also on the selected synthetic route, i.e. melt intercalation vs. in situ intercalative polymerization. Typically, protonated ω-aminododecanoic acid exchanged montmorillonite allowed to intercalate ϵ-caprolactone monomer and yielded nanocomposites upon in situ polymerization, whereas they exclusively formed microcomposites when blended with preformed PCL chains. In other words, it is shown that the formation of polymer layered silicate nanocomposites is not straightforward and cannot be predicted since it strongly depends on parameters such as ammonium cation type and functionality together with the production procedure, i.e., melt intercalation, solvent evaporation or in situ polymerization.</p>