People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Altaf, Mohammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Rapeseed oil gallate-amide-urethane coating material: Synthesis and evaluation of coating propertiescitations
- 2022Rapeseed oil-based hippurate amide nanocomposite coating material for anticorrosive and antibacterial applicationscitations
- 2022Development of Metallo (Calcium/Magnesium) Polyurethane Nanocomposites for Anti-Corrosive Applicationscitations
- 2019Machining Characteristics of Titanium Ti-6Al-4V, Inconel 718 and Tool Steel – A Critical Reviewcitations
Places of action
Organizations | Location | People |
---|
article
Rapeseed oil gallate-amide-urethane coating material: Synthesis and evaluation of coating properties
Abstract
<jats:title>Abstract</jats:title><jats:p>The present manuscript describes the synthesis of urethane (ROGAU) coating material from Rapeseed oil (RO), Gallic acid (GA) and Toluylene-2,4-diisocyanate [TDI], for the first time. The reaction was accomplished in the following steps: (i) amidation of RO, producing diol fatty amide, HERA, followed by (ii) gallation reaction of HERA with GA, resulting in RO-based gallate amide (ROGA). The structural elucidation by FTIR and NMR confirmed the insertion of amide and ester moieties in the ROGA backbone. To add applicational value to ROGA, it was then derivatized by urethanation reaction with TDI to develop ambient temperature-cured ROGAU, as a corrosion protective coating material. ROGAU coatings were scratch resistant, well-adherent, and flexible to a considerable extent and showed good corrosion resistance performance toward saline medium (3.5 wt% NaCl). ROGAU coatings can be safely used up to 200°C.</jats:p>