Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dominguez, Rocio B.

  • Google
  • 5
  • 7
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2025Electrochemical Detection of Dopamine with Graphene Oxide Carbon Dots Modified Electrodes3citations
  • 2021Catalase biosensor based on the PAni/cMWCNT support for peroxide sensing12citations
  • 2021Simultaneous Detection of Dihydroxybenzene Isomers Using Electrochemically Reduced Graphene Oxide-Carboxylated Carbon Nanotubes/Gold Nanoparticles Nanocomposite16citations
  • 2018Room Temperature Detection of Acetone by a PANI/Cellulose/WO<sub>3</sub>Electrochemical Sensor21citations
  • 2015Design of a novel magnetic particles based electrochemical biosensor for organophosphate insecticide detection in flow injection analysis37citations

Places of action

Chart of shared publication
Torres-Soto, Omar Isaac
1 / 1 shared
Vega-Rios, Alejandro
1 / 1 shared
Osuna, Velia
1 / 1 shared
Marty, Jean-Louis
1 / 3 shared
Hayat, Akhtar
1 / 2 shared
Muñoz, Roberto
1 / 9 shared
Alonso, Gustavo A.
1 / 1 shared
Chart of publication period
2025
2021
2018
2015

Co-Authors (by relevance)

  • Torres-Soto, Omar Isaac
  • Vega-Rios, Alejandro
  • Osuna, Velia
  • Marty, Jean-Louis
  • Hayat, Akhtar
  • Muñoz, Roberto
  • Alonso, Gustavo A.
OrganizationsLocationPeople

article

Catalase biosensor based on the PAni/cMWCNT support for peroxide sensing

  • Dominguez, Rocio B.
Abstract

<jats:title>Abstract</jats:title><jats:p>Polymeric-based composites can contribute to enhancing the detection, stability, and performance of enzymatic biosensors, due to their high structural stability, conductivity, and biocompatibility. This work presents the fabrication of a nanocomposite of polyaniline (PAni)/gold nanoparticles (AuNP)/carboxylated multiwalled carbon nanotubes (cMWCNT) as functional support for covalently linked catalase (CAT) enzyme. PAni was electropolymerized on a screen-printed carbon electrode (SPCE) and decorated with AuNP to improve charge transfer properties. CAT was bonded through amide formation using the carboxylic groups of cMWCNT, resulting in PAni/AuNP/cMWCNT/CAT biosensor. The structural and electroactive characteristics of the nanocomposite were studied by SEM, FT-IR, and cyclic voltammetry. The optimal performance was achieved after CAT immobilization over PAni/AuNP/cMWCNT/nanocomposite, showing improved analytical features such as a fast amperometric response of 1.28 s, a wide detection range from 0.01 to 6.8 mM, a correlation coefficient (<jats:italic>R</jats:italic><jats:sup>2</jats:sup>) of 0.9921, a low detection limit of 2.34 µM, and an average recovery rate of 99.6% when evaluated in milk samples. Additionally, the bioelectrode showed excellent selectivity and retained bioactivity after 30 days of storage. Such remarkable performance proved the synergistic effects of both the high surface area of the cMWCNT and AuNP and the inherent PAni electroactivity, yielding direct electron transfer from CAT.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • Carbon
  • scanning electron microscopy
  • nanotube
  • gold
  • cyclic voltammetry
  • biocompatibility
  • bioactivity