Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kilpelainen, Simo

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Role of excessive vacancies in transgranular stress corrosion cracking of pure copper4citations

Places of action

Chart of shared publication
Aaltonen, Pertti
1 / 20 shared
Yagodzinskyy, Yuriy
1 / 15 shared
Tuomisto, Filip
1 / 44 shared
Hanninen, Hannu
1 / 4 shared
Saukkonen, Tapio
1 / 25 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Aaltonen, Pertti
  • Yagodzinskyy, Yuriy
  • Tuomisto, Filip
  • Hanninen, Hannu
  • Saukkonen, Tapio
OrganizationsLocationPeople

article

Role of excessive vacancies in transgranular stress corrosion cracking of pure copper

  • Kilpelainen, Simo
  • Aaltonen, Pertti
  • Yagodzinskyy, Yuriy
  • Tuomisto, Filip
  • Hanninen, Hannu
  • Saukkonen, Tapio
Abstract

The role of the excessive metal vacancy generation in transgranular stress corrosion cracking (TGSCC) of pure copper was studied in relation to crack initiation and growth mechanisms. Electrochemically polarized specimens were strained at room temperature in 0.3 M NaNO2 solution. Cation vacancy redistribution under applied anodic polarization took place at the p-n junction of the duplex Cu2O oxide film, resulting in cation vacancy transport in the p-type layer of the oxide to the metal substrate interface and in excessive metal vacancy accumulation in the metal substrate. The rapid initiation of TGSCC at room temperature in the cold-worked oxygen-free high-conductivity copper samples occurred during slow strain rate tests under anodic polarization in 0.3 M NaNO2 solution. The duplex Cu2O oxide film structure formed by cathodic deposition, before applying the anodic polarization, was characterized with X-ray diffraction and field emission scanning electron microscopy/electron backscatter diffraction/energy-dispersive spectroscopy. The redistribution of cation vacancies in the p-type oxide phase due to the anodic polarization and the metal vacancy accumulation in the copper substrate interface was studied by using positron annihilation spectroscopy.

Topics
  • Deposition
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • crack
  • positron annihilation lifetime spectroscopy
  • copper
  • electron backscatter diffraction
  • stress corrosion
  • vacancy