People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oschatz, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Strain-rate dependence of mechanical characteristics of PLLA with different MW
- 2022Thermal annealing of injection molded VHMW PLLAcitations
- 2021Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behavior
- 2021Definition of test parameters for dynamic mechanical testing of polymeric implant materialscitations
Places of action
Organizations | Location | People |
---|
article
Strain-rate dependence of mechanical characteristics of PLLA with different MW
Abstract
<jats:title>Abstract</jats:title><jats:p>Dynamic mechanical properties of polymers for biomedical applications are crucial parameters for development and engineering of new medical devices. Here, the time-dependent material behavior is a key factor for durability. Varying the strain rate is a convenient implementation of time-dependency for uniaxial testing. This study investigates time-dependence of Poly(L-Lactide) (PLLA) through uniaxial testing with different strain rates and PLLA with different molecular weight. The results show strain dependence for elongation at break and yield stress, Young’s modulus however is not rate dependent. An increase in elongation at break is also seen with increasing molecular weight of PLLA. Plastic strain increases significantly only for PLLA with an intermediate inherent viscosity. Results show distinct time dependencies regarding strain rate for PLLA with slightly different inherent viscosities. For stent-related mechanical material characteristics, higher molecular weight PLLA seems to be advantageous. This study only considers base materials, although appropriate thermal, mechanical as well as chemical post processing approaches for further adjustment of different properties have already been shown. A combination of the best possible base material and a suitable post-processing should be targeted.</jats:p>