People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arbeiter, Daniela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Design study of dynamic mechanical test bench specimen grips
- 2022Evaluation of a nonlinear viscoelastic-plastic constitutive model in numerical simulation of thermoplastic polymers for stent applicationcitations
- 2022Thermal annealing of injection molded VHMW PLLAcitations
- 2022The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applicationscitations
- 2021Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behavior
- 2021Fiber composite materials via coaxial, dual or blend electrospinningcitations
- 2021Definition of test parameters for dynamic mechanical testing of polymeric implant materialscitations
- 2020Investigating dynamic-mechanical properties of multi-layered materials for biomedical applicationscitations
- 2019Thermomechanical properties of PEGDA in combination with different photo-curable comonomerscitations
- 2019Controlled biodegradation of metallic biomaterials by plasma polymer coatings using hexamethyldisiloxane and allylamine monomerscitations
- 2018Thermomechanical properties of PEGDA and its co-polymerscitations
- 2017Influence of bulk incorporation of FDAc and PTX on polymer propertiescitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of a nonlinear viscoelastic-plastic constitutive model in numerical simulation of thermoplastic polymers for stent application
Abstract
<jats:title>Abstract</jats:title><jats:p>To simulate the specific material properties of thermoplastic polymers a suitable constitutive model is essential. The parallel rheological framework (PRF) model was calibrated and evaluated in this study as potential constitutive model for polymer stent application. Tensile as well as recovery tests with different loading rates were performed using PLLA specimens. In order to calibrate the constitutive model, the conducted material tests were simulated accordingly. The parameters of the model were iteratively varied to obtain good accordance of the simulation with the material tests. In contrast to elastic plastic material models, viscoelastic material behavior can be represented with the nonlinear viscoelastic-plastic PRF model. The generated and possibly further refined model can be used for the simulation of polymer stents.</jats:p>