People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seitz, Hermann
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Quantitative Macromolecular Modeling Assay of Biopolymer-Based Hydrogelscitations
- 2024Direct ink writing of highly loaded polycaprolactone-barium titanate/bioactive glass composites for osteochondral tissue engineering
- 2023Piezoelectric and bioactive composites: Functional materials for bone tissue engineering
- 20223D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility studycitations
- 2022A novel approach to fabricate load-bearing Ti6Al4V-Barium titanate piezoelectric bone scaffolds by coupling electron beam melting and field-assisted sintering
- 2022The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applicationscitations
- 2021Rapid tooling for micro injection molding of micro medical devices via digital light processing
- 20213D printing of biodegradable poly(L-lactide)/hydroxyapatite composite by composite extrusion modeling
- 2021Heat accumulation during femtosecond laser treatment at high repetition rate – A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V
- 2021Tunable Pseudo-Piezoelectric Effect in Doped Calcium Titanate for Bone Tissue Engineering
- 20203D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineeringcitations
- 2020Sintering behavior of 3D printed barium titanate composite scaffolds for bone repair
- 2020PEGDA drug delivery scaffolds manufactured with a novel hybrid AM process
- 20203D printing of frames for anti-coronavirus face shields using different processes and materials
- 20193D-printed PEGDA structure with multiple depots for advanced drug delivery systems
- 2019A Novel Hybrid Additive Manufacturing Process for Drug Delivery Systems with Locally Incorporated Drug Depots. citations
- 2019Thermomechanical properties of PEGDA in combination with different photo-curable comonomerscitations
- 20193D printing of smart materials for bone regeneration
- 2018Thermomechanical properties of PEGDA and its co-polymerscitations
- 2007Non-toxic flexible photopolymers for medical stereolithography technologycitations
Places of action
Organizations | Location | People |
---|
article
The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applications
Abstract
<jats:title>Abstract</jats:title><jats:p>Hydrogels are 3D polymeric networks, which exhibit properties such as softness, viscoelasticity and their ability to absorb large amounts of water. These characteristics make them exceptionally suitable in biomedicine as e.g. tissue scaffolds, drug delivery systems, wound dressings or contact lenses. One of these hydrogels is the biocompatible, hydrophilic and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA). It is used in different biomedical applications due to its tunable mechanical characteristics. In our study, the mechanical properties of different PEGDA hydrogel compositions with variyng molecular masses and contents of water/methanol, were investigated. Different compositions containing 20 m%, 30 m% or 40 m% of PEGDA<jats:sub>4K</jats:sub>(4,000 g/mol), PEGDA<jats:sub>10K</jats:sub>(10,000 g/mol) or PEGDA<jats:sub>20K</jats:sub>(20,000 g/mol) in ultrapure water/methanol (1:2) were produced. Dumbbell-shaped samples were prepared in molds via photopolymerization in a UV chamber. Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) was used as photoinitiator (0.5% w/w). The mechanical testing was performed using a uniaxial testing system. The obtained results showed averagely 78% higher tensile strength (σmax) values for 30 m% and 40 m% samples in comparison with 20 m% samples for all of the tested polymers. PEGDA<jats:sub>20K</jats:sub>30 m% samples showed the highest σmax among all of the samples with 12.8 MPa. All of the PEGDA20K samples exhibited the highest elongation at break (εB) values (up to 958%), whereas the lowest values were found for PEGDA<jats:sub>4K</jats:sub>(up to 105%). The obtained stress-strain curves for most of the samples were typical for deformable, amorphous polymers with a deformation upon reaching a critical stress point. The PEGDA materials showed variable mechanical characteristics according to changing molecular mass or polymer concentration. These promising results showed that it should be possible to compose scaffolds with desired mechanical stability according to the needed application.</jats:p>