People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arbeiter, Daniela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Design study of dynamic mechanical test bench specimen grips
- 2022Evaluation of a nonlinear viscoelastic-plastic constitutive model in numerical simulation of thermoplastic polymers for stent applicationcitations
- 2022Thermal annealing of injection molded VHMW PLLAcitations
- 2022The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applicationscitations
- 2021Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behavior
- 2021Fiber composite materials via coaxial, dual or blend electrospinningcitations
- 2021Definition of test parameters for dynamic mechanical testing of polymeric implant materialscitations
- 2020Investigating dynamic-mechanical properties of multi-layered materials for biomedical applicationscitations
- 2019Thermomechanical properties of PEGDA in combination with different photo-curable comonomerscitations
- 2019Controlled biodegradation of metallic biomaterials by plasma polymer coatings using hexamethyldisiloxane and allylamine monomerscitations
- 2018Thermomechanical properties of PEGDA and its co-polymerscitations
- 2017Influence of bulk incorporation of FDAc and PTX on polymer propertiescitations
Places of action
Organizations | Location | People |
---|
article
Definition of test parameters for dynamic mechanical testing of polymeric implant materials
Abstract
<jats:title>Abstract</jats:title><jats:p>The selection of appropriate test conditions is of critical importance in mechanical testing of biomaterials. In particular the definition of dynamic test conditions is requiring high efforts. In this work, a thermoplastic semicrystalline polymer was characterized regarding mechanical properties by dynamic mechanical analysis (DMA). Timetemperature- superposition (TTS) of dynamic mechanical data provides an efficient method for the experimental design of follow-up studies. Our focus was to provide test conditions for cyclic tests, which correspond to viscoelastic materials. The results show, that the test temperature for dynamic mechanical fatigue tests, as an indicator of mechanical modification for viscoelastic materials, should necessarily remain below the onset temperatures of storage modulus and loss modulus. Moreover, changes in material characteristics due to varying frequencies should be considered when constructing a master curve for the evaluation of test frequencies. Therefore, TTS is particularly beneficial for the rapid determination of test parameters for accelerated material examination.</jats:p>