People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fiedler, Nicklas
Universitätsmedizin Rostock
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Strain-rate dependence of mechanical characteristics of PLLA with different MW
- 2022Design study of dynamic mechanical test bench specimen grips
- 2022Evaluation of a nonlinear viscoelastic-plastic constitutive model in numerical simulation of thermoplastic polymers for stent applicationcitations
- 2022Thermal annealing of injection molded VHMW PLLAcitations
- 2021Fiber composite materials via coaxial, dual or blend electrospinningcitations
- 2021Definition of test parameters for dynamic mechanical testing of polymeric implant materialscitations
- 2020Investigating dynamic-mechanical properties of multi-layered materials for biomedical applicationscitations
Places of action
Organizations | Location | People |
---|
article
Fiber composite materials via coaxial, dual or blend electrospinning
Abstract
<jats:title>Abstract</jats:title><jats:p>Electrospinning (ES) is a suitable and cost effective method to mimic the chemical composition, morphology, and functional surface of natural tissues, for example of the nervous, dermal, vascular, and musculoskeletal systems. This technique is a versatile tool to obtain tailored fibrous scaffolds from various polymer materials. By varying the diameter, porosity, orientation, layering, surface structuring, mechanical properties and biodegradability of the fibers the properties can be adapted for specific applications ranging from implantable medical devices to wound repair and protective clothing. Especially the combination of different polymer types offers a high potential. In this study electrospun two-component nonwoven structures of thermoplastic copolyester elastomer (TPC-ET) and bioresorbable polylactide (PLLA) were fabricated, using different ES setups. A comparative evaluation in terms of porosity, thermal and mechanical properties as well as required fabrication effort, was performed. Nonwovens made from polymer blends and coaxial spun core-sheath fibers showed similar tensile strength, which was higher than dual electrospun fabrics. Porosity was found to be in the range of 80 - 90%. By modifying the polymer solution and process parameters multicomponent nonwoven structures with tailored properties and drug release profiles can be manufactured.</jats:p>