Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oschatz, Stefan

  • Google
  • 4
  • 10
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Strain-rate dependence of mechanical characteristics of PLLA with different MWcitations
  • 2022Thermal annealing of injection molded VHMW PLLA1citations
  • 2021Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behaviorcitations
  • 2021Definition of test parameters for dynamic mechanical testing of polymeric implant materials2citations

Places of action

Chart of shared publication
Lebahn, Kerstin
3 / 7 shared
Fiedler, Nicklas
3 / 7 shared
Grabow, Niels
4 / 20 shared
Arbeiter, Daniela
3 / 12 shared
Schultz, Selina
1 / 1 shared
Schmitz, Klaus-Peter
1 / 8 shared
Paasche, Gerrit
1 / 2 shared
Lenarz, Thomas
1 / 7 shared
Stöffler, Kerstin
1 / 1 shared
Reske, Thomas
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Lebahn, Kerstin
  • Fiedler, Nicklas
  • Grabow, Niels
  • Arbeiter, Daniela
  • Schultz, Selina
  • Schmitz, Klaus-Peter
  • Paasche, Gerrit
  • Lenarz, Thomas
  • Stöffler, Kerstin
  • Reske, Thomas
OrganizationsLocationPeople

article

Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behavior

  • Arbeiter, Daniela
  • Schmitz, Klaus-Peter
  • Paasche, Gerrit
  • Oschatz, Stefan
  • Lebahn, Kerstin
  • Lenarz, Thomas
  • Stöffler, Kerstin
  • Reske, Thomas
  • Grabow, Niels
Abstract

<jats:title>Abstract</jats:title><jats:p>The novel concept of stenting the Eustachian tube was established to provide an effective and safe therapy of Eustachian tube dysfunction. Biodegradable polymer stents are being developed to restore impaired tube function. As the supporting effect may be required for different time periods, PLA-co-PEG copolymers, PLLGA, PDLLA and PDS, having shorter degradation times compared to PLLA, were evaluated as potential stent materials. Since tensile tests and thermal analyses of solvent cast films from PLA-co-PEG copolymers showed comparable properties to PLLA, stent samples were manufactured from these materials. Mechanical stent testing revealed an increase of elastic recoil and slight decrease of collapse pressure compared to PLLA. In a short term accelerated degradation study a considerable percentage molar mass reduction and an increasing degree of crystallinity depending on PEG content was found. Based on the results obtained, the tested polymers offer a promising, faster degradable alternative to the established stent material PLLA.</jats:p>

Topics
  • copolymer
  • crystallinity