Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schubert, Julia

  • Google
  • 1
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Numerical simulation of the functionality of a stent structure for venous valve prostheses2citations

Places of action

Chart of shared publication
Wree, Andreas
1 / 1 shared
Stiehm, Michael
1 / 1 shared
Schmidt, Wolfram
1 / 57 shared
Pfensig, Sylvia
1 / 1 shared
Schmitz, Klaus-Peter
1 / 8 shared
Schümann, Kerstin
1 / 2 shared
Kischkel, Sabine
1 / 1 shared
Grabow, Niels
1 / 20 shared
Keiler, Jonas
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Wree, Andreas
  • Stiehm, Michael
  • Schmidt, Wolfram
  • Pfensig, Sylvia
  • Schmitz, Klaus-Peter
  • Schümann, Kerstin
  • Kischkel, Sabine
  • Grabow, Niels
  • Keiler, Jonas
OrganizationsLocationPeople

article

Numerical simulation of the functionality of a stent structure for venous valve prostheses

  • Wree, Andreas
  • Stiehm, Michael
  • Schmidt, Wolfram
  • Pfensig, Sylvia
  • Schmitz, Klaus-Peter
  • Schümann, Kerstin
  • Kischkel, Sabine
  • Grabow, Niels
  • Schubert, Julia
  • Keiler, Jonas
Abstract

<jats:title>Abstract</jats:title><jats:p>Chronic venous insufficiency (CVI) is a common disease characterized by impaired venous drainage leading to congestion in the lower limbs. Currently, there are no artificial or biological venous valve prostheses commercially available. Previous minimally invasive design concepts failed to achieve sufficient long term results in animal or in vitro studies. The aim was to implement structural numerical simulation of clinically relevant loading cases for minimally invasive implantable venous valve prostheses. A bicuspid valve design was chosen as it showed superior results compared to tricuspid valves in previous studies. The selfexpanding support structure was developed by using diamond-shaped elements. Using finite-element analysis (FEA), various loading cases, including expansion and crimping of the stent structure and the release into a venous vessel, were simulated. A hyperelastic constitutive law for the vascular model was generated from uniaxial tensile test data of unfixated human vein walls. This study also compared numerical and experimental results regarding compliance and tensile tests to validate the vein material model. The calculated performance concerning expansion and crimping, as well as the release of the stent into a venous vessel, demonstrated the suitability of the stent design for minimally invasive application.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • finite element analysis