People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lebahn, Kerstin
Universitätsmedizin Rostock
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Strain-rate dependence of mechanical characteristics of PLLA with different MW
- 2022Evaluation of a nonlinear viscoelastic-plastic constitutive model in numerical simulation of thermoplastic polymers for stent applicationcitations
- 2021Polymer selection for Eustachian tube stent application based on mechanical, thermal and degradation behavior
- 2021Definition of test parameters for dynamic mechanical testing of polymeric implant materialscitations
- 2018Development of biodegradable stents for the treatment of Eustachian tube dysfunctioncitations
- 2017Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents
- 2016Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymerscitations
Places of action
Organizations | Location | People |
---|
article
Conversion of engineering stresses to Cauchy stresses in tensile and compression tests of thermoplastic polymers
Abstract
<jats:title>Abstract</jats:title><jats:p>Thermoplastic polymers exhibit non-isochoric behaviour during tensile and compression testing as well as particular deformations like local necking (tension) or buckling (compression). A method for the determination of Cauchy stresses from tensile and compression tests is presented, that considers the actual deformations of the test specimens. The exact geometry of the specimens in the respective present configuration is determined in photographs, which are taken continuously throughout the test. The engineering stresses at several time points are converted into Cauchy stresses using newly developed formulas in consideration of the actual specimen geometry. For validation finite element analyses of the tensile and compression tests are performed using the identified stress-strain curves. The numerical results show good agreement with the experiments for the tested polymers. Thus a method for conversion of engineering to Cauchy stresses in tensile and compression tests could be established considering the non-isochoric deformation in plasticity. With this method “true” stress-strain curves as input for finite element material models can be identified for arbitrary materials.</jats:p>