Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Włosiński, Władysław

  • Google
  • 2
  • 3
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Metallization of ceramic materials based on the kinetic energy of detonation waves17citations
  • 2015Utilizing the energy of kinetic friction for the metallization of ceramics15citations

Places of action

Chart of shared publication
Golański, Dariusz
2 / 11 shared
Chmielewski, Tomasz M.
2 / 31 shared
Zimmerman, Jolanta
1 / 2 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Golański, Dariusz
  • Chmielewski, Tomasz M.
  • Zimmerman, Jolanta
OrganizationsLocationPeople

article

Metallization of ceramic materials based on the kinetic energy of detonation waves

  • Włosiński, Władysław
  • Golański, Dariusz
  • Chmielewski, Tomasz M.
Abstract

The paper presents an innovatory low-energy detonation-spraying method suitable for the metallization of ceramic materials, in which the energy necessary for joining the metallic coating with the ceramic is delivered in a mechanical way. In the proposed method, the metallic particles, shot from the spraying gun, impinge onto the ceramic substrate with a high velocity, and their kinetic energy is transformed into heat delivered in a specified portion directly to the region of the metal/ceramic joint being formed. The stress distribution and the temperature field at the coating/substrate interface were analyzed also numerically with the aim to optimize the metallization process parameters so as to stimulate the formation of the coating/ceramic joint and, at the same time, to control the region of heat dissipation, the temperature, and the stress state induced in the joint.

Topics
  • impedance spectroscopy
  • ceramic
  • joining