Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ali, Ali Muhammed Moula

  • Google
  • 2
  • 6
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Investigating the impact of wet rendering (solventless method) on PUFA-rich oil from catfish (<i>Clarias magur</i>) viscera2citations
  • 2023Influence of solvent-free extraction of fish oil from catfish (<i>Clarias magur</i>) heads using a Taguchi orthogonal array design: A qualitative and quantitative approach7citations

Places of action

Chart of shared publication
Kieliszek, Marek
2 / 3 shared
Nagarajan, Muralidharan
1 / 1 shared
Bavisetty, Sri Charan Bindu
2 / 2 shared
Kumar, Nishant
2 / 6 shared
Nukhthamna, Pikunthong
1 / 1 shared
Kudre, Tanaji
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Kieliszek, Marek
  • Nagarajan, Muralidharan
  • Bavisetty, Sri Charan Bindu
  • Kumar, Nishant
  • Nukhthamna, Pikunthong
  • Kudre, Tanaji
OrganizationsLocationPeople

article

Investigating the impact of wet rendering (solventless method) on PUFA-rich oil from catfish (<i>Clarias magur</i>) viscera

  • Ali, Ali Muhammed Moula
  • Kieliszek, Marek
  • Nagarajan, Muralidharan
  • Bavisetty, Sri Charan Bindu
  • Kumar, Nishant
Abstract

<jats:title>Abstract</jats:title><jats:p>Catfish (<jats:italic>Clarias magur</jats:italic>) is a popular freshwater fish food worldwide. The processing of this fish generates a significant amount of waste, mainly in the form of viscera, which constitutes around 10–12% of the fish’s total weight. This study was focused on extracting polyunsaturated fatty acid (PUFA)-rich oil from catfish viscera, aiming to enhance the extraction process and make the production of oil and handling of fish byproducts more cost-effective. The wet reduction method, a solvent-free approach, was used for extraction, with yield optimization done via the Box–Behnken design. The resulting oil was evaluated for its oxidative quality and chemical characteristics. The optimal conditions for the wet rendering process were as follows: viscera to water ratio, 1:0.5 (w/v); temperature, 90℃; and time, 20 min, yielding 12.40 g/100 g of oil. The oil extracted under optimal wet rendering conditions had quality and oxidative stability comparable to solvent extraction and fewer secondary oxidation compounds. This oil had a higher PUFA content, specifically a 4:1 ratio of omega 6 to omega 3. Such oil, derived from catfish viscera, is suitable for the food industry due to its solvent-free extraction method.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • solvent extraction