Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Middendorf, Bernhard

  • Google
  • 12
  • 21
  • 120

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2025An Initial Study of Ultra High Performance Concrete as Reusable Mold Material for Aluminum Castingcitations
  • 2023Fracture behavior of ultra‐high performance lightweight concrete: In situ investigations using μ‐CT1citations
  • 2023Fibre reinforced ultra-high performance concrete – Rheology, fibre bond strength and flexural strengthcitations
  • 2023Potential of Fe-Mn-Al-Ni Shape Memory Alloys for Internal Prestressing of Ultra-High Performance Concrete7citations
  • 2023Ultra-high performance alkali-activated slag as a reusable mold for light metal castingcitations
  • 2023Atomistic Dissolution of β-C2S Cement Clinker Crystal Surface: Part 1 Molecular Dynamics (MD) Approachcitations
  • 2022Dissolution of β-C<sub>2</sub>S Cement Clinker: Part 1 Molecular Dynamics (MD) Approach for Different Crystal Facets8citations
  • 2022Dissolution of Portlandite in Pure Water: Part 1 Molecular Dynamics (MD) Approach16citations
  • 2022Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach28citations
  • 2022Dissolution of β-C<sub>2</sub>S Cement Clinker: Part 2 Atomistic Kinetic Monte Carlo (KMC) Upscaling Approach22citations
  • 2020Effect of Fibre Material and Fibre Roughness on the Pullout Behaviour of Metallic Micro Fibres Embedded in UHPC28citations
  • 2019A simulation-based approach to evaluate objective material parameters from concrete rheometer measurements10citations

Places of action

Chart of shared publication
Teichmann, Fabian
1 / 2 shared
Wetzel, Alexander
6 / 8 shared
Link, Janna
3 / 4 shared
Müller, Sebastian
2 / 5 shared
Umbach, Cristin
1 / 2 shared
Schleiting, Maximilian
3 / 3 shared
Frenck, Johanna-Maria
1 / 10 shared
Niendorf, Thomas
2 / 301 shared
Bauer, André
1 / 5 shared
Izadifar, Mohammadreza
5 / 18 shared
Uddin, K. M. Salah
5 / 5 shared
Koenders, Eduardus A. B.
5 / 161 shared
Ukrainczyk, Neven
5 / 52 shared
Vollmer, Malte
1 / 36 shared
Krooss, Philipp
1 / 6 shared
Krooß, Philipp
1 / 36 shared
Böhm, Stefan
1 / 22 shared
Wiemer, Niels
1 / 1 shared
Schomberg, Thomas
1 / 3 shared
Gerland, Florian
1 / 3 shared
Wünsch, Olaf
1 / 3 shared
Chart of publication period
2025
2023
2022
2020
2019

Co-Authors (by relevance)

  • Teichmann, Fabian
  • Wetzel, Alexander
  • Link, Janna
  • Müller, Sebastian
  • Umbach, Cristin
  • Schleiting, Maximilian
  • Frenck, Johanna-Maria
  • Niendorf, Thomas
  • Bauer, André
  • Izadifar, Mohammadreza
  • Uddin, K. M. Salah
  • Koenders, Eduardus A. B.
  • Ukrainczyk, Neven
  • Vollmer, Malte
  • Krooss, Philipp
  • Krooß, Philipp
  • Böhm, Stefan
  • Wiemer, Niels
  • Schomberg, Thomas
  • Gerland, Florian
  • Wünsch, Olaf
OrganizationsLocationPeople

article

A simulation-based approach to evaluate objective material parameters from concrete rheometer measurements

  • Schomberg, Thomas
  • Gerland, Florian
  • Wünsch, Olaf
  • Wetzel, Alexander
  • Middendorf, Bernhard
Abstract

<jats:title>Abstract</jats:title><jats:p>Modern concretes such as ultra-high performance concrete (UHPC) show excellent strength properties combined with favorable flow properties. However, the flow properties depend strongly on process parameters during production (temperature, humidity etc.), but also change sensitively even with slight variations in the mixture. In order to ensure desired processing of the fluidlike material and consistent process quality, the flow properties of the concrete must be evaluated quantitatively and objectively. The usual evaluation of measurements from concrete rheometers, for example of the ball probe system type, does not allow the direct determination of the objective material parameters yield stress and plastic viscosity of the sample. We developed a simulation-based method for the evaluation of rheometric measurements of fine grained high performance concretes like self-compacting concrete (SCC) and UHPC. The method is based on a dimensional analysis for ball measuring systems. Through numerical parameter studies we were able to describe the identified relationship between measuring quantities and material parameters quantitatively for two devices of this type. The evaluation method is based on the Bingham model. With this method it is possible to measure both the yield stress and the plastic viscosity of the fresh sample simultaneously. Device independence of the evaluation process is proven and an application to fiber-reinforced UHPC is presented.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • strength
  • viscosity