People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mosiałek, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe 0.9–x Mo x Y 0.1 O 3–δ triple conducting composite for solid oxide fuel cells:Part IIcitations
- 2024Boosting the electrochemical performance of oxygen electrodes via the formation of LSCF-BaCe0.9–xMoxY0.1O3–δ triple conducting composite for solid oxide fuel cellscitations
- 2023Synthesis of Yb and Sc stabilized zirconia electrolyte (Yb0.12Sc0.08Zr0.8O2–δ) for intermediate temperature SOFCs: Microstructural and electrical propertiescitations
- 2022Improvement of La0.8Sr0.2MnO3−δ Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O3citations
- 2016Ba0.5Sr0.5Co0.8Fe0.2O3–δ–La0.6Sr0.4Co0.8Fe0.2O3–δ Composite Cathode for Solid Oxide Fuel Cellcitations
Places of action
Organizations | Location | People |
---|
article
Ba0.5Sr0.5Co0.8Fe0.2O3–δ–La0.6Sr0.4Co0.8Fe0.2O3–δ Composite Cathode for Solid Oxide Fuel Cell
Abstract
<jats:title>Abstract</jats:title> <jats:p>Composite cathodes contain Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Co<jats:sub>0.8</jats:sub>Fe<jats:sub>0.2</jats:sub>O<jats:sub>3–δ</jats:sub> and La<jats:sub>0.6</jats:sub>Sr<jats:sub>0.4</jats:sub>Co<jats:sub>0.8</jats:sub>Fe<jats:sub>0.2</jats:sub>O<jats:sub>3–δ</jats:sub> were tested in different configuration for achieving cathode of area specific resistance lower than Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Co<jats:sub>0.8</jats:sub>Fe<jats:sub>0.2</jats:sub>O<jats:sub>3–δ</jats:sub> and La<jats:sub>0.6</jats:sub>Sr<jats:sub>0.4</jats:sub>Co<jats:sub>0.8</jats:sub>Fe<jats:sub>0.2</jats:sub>O<jats:sub>3–δ</jats:sub> cathodes. Electrodes were screen printed on samaria-doped ceria electrolyte half-discs and tested in the three electrode setup by the electrochemical impedance spectroscopy. Microstructure was observed by scanning electron microscopy. The lowest area specific resistance 0.46 and 2.77 Ω cm<jats:sup>−2</jats:sup> at 700 °C and 600 °C respectively revealed composite cathode contain Ba<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>Co<jats:sub>0.8</jats:sub>Fe<jats:sub>0.2</jats:sub>O<jats:sub>3–δ</jats:sub> and La<jats:sub>0.6</jats:sub>Sr<jats:sub>0.4</jats:sub>Co<jats:sub>0.8</jats:sub>Fe<jats:sub>0.2</jats:sub>O<jats:sub>3–δ</jats:sub> in 1:1 weight ratio. The area specific resistance of this cathode is characterized by the lowest activation energy among tested cathodes.</jats:p>