People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hackney, Philip
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021Effect of Polypropylene fibres on the Workability parameters of Extrudable Cementitious Materialcitations
- 2020Effect of polypropylene fibres on the workability parameters of extrudable cementitious materialscitations
- 2017Optimisation of Additive Manufactured Sand Printed Mould Material for Aluminium Castingscitations
- 2017Operational performance of individual handsaw teeth
- 20173D Sand Printing for Automotive Mass Production Applicationscitations
- 2017Characterisation of direct 3D sand printing process for the production of sand cast mould toolscitations
- 2017Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay
- 2016Weld overlay cladding repair - An investigation of tensile strength variation in processed metallic substrate
- 2015Investigation into the Development of an Additive Manufacturing Technique for the Production of Fibre Composite Productscitations
- 2012Determination of wood strength properties through standard test procedures
- 2005Reverse Engineering – Speeds up manufacture of thermoforming tools
- 2005Reverse Engineering – Speeds up manufacture of thermoforming tools
Places of action
Organizations | Location | People |
---|
article
3D Sand Printing for Automotive Mass Production Applications
Abstract
Additive manufacturing (AM) of metallic products is seen by many to be commercially viable for only small and highly complex components, manufactured with difficult to machine materials using heat sintering process. In the automotive manufacturing sector, metal hard tooling is often required to produce mass produced components, and the tools are typically bespoke, large in size, inflexible and complex. Conventionally these tools have either been machined from solid billets or near-net-shape cast and then machined to achieve final size. Rapid casting technologies (RCT) use AM 3D sand printing process to manufacture sand mould tools used to create the production tooling. Adopters of this technology can achieve an increasingly agile and robust production process, RCT can also rewrite the design hand book for casting design. The research findings demonstrate that RCT can be successfully applied within the automotive industry, achieving considerable cost and time savings whilst improving quality and product flexibility.